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Abstract

In this paper the design and formal verification of the lower levels of the of the Reliable
Computing Platform (RCP), a fault-tolerant computing system for digital flight control ap-
plications, are presented. The RCP uses NMR-style redundancy to mask faults and internal
majority voting to flush the effects of transient faults. Two new layers of the RCP hierarchy
are introduced: the Minimal Voting refinement (DA_minv) of the Distributed Asynchronous
(DA) model, and the Local Executive (LE) Model. Both the DA_minv model and the LE
model are specified formally and have been verified using the EHDM verification system. All
specifications and proofs are available electronically via the Internet using anonymous FTP

or World Wide Web (WWW) access.
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1 Introduction

This paper describes the Phase 3 effort on the design and verification of the Reliable Com-
puting Platform (RCP). The paper builds on the Phase 1 and Phase 2 efforts described in
[1] and [2].

The goal of the RCP project is to devise a fault-tolerant computer architecture that
adheres to a system-design philosophy called “Design For Validation.” The basic tenets of
this design philosophy are summarized in the following four statements:

1. A system is designed such that complete and accurate models, which estimate critical
properties such as reliability and performance, can be constructed. All parameters of
the model that cannot be deduced from the logical design must be measured. All such
parameters must be measurable within a feasible amount of time.

2. The design process makes tradeoffs in favor of designs that minimize the number of
measurable parameters in order to reduce the validation cost. A design that has excep-
tional performance properties yet requires the measurement of hundreds of parameters
(say, by time-consuming fault-injection experiments) would be rejected over a less ca-
pable system that requires minimal experimentation.

3. The system is designed and verified using rigorous mathematical techniques, usually
referred to as a formal verification. It is assumed that the formal verification makes
the probability of system failure from design faults negligible, so the reliability model
does not include transitions representing design errors.

4. The reliability (or performance) model is shown to be accurate with respect to the
system implementation. This is accomplished analytically not experimentally.

Thus, a major objective of this approach is to minimize the amount of experimental
testing required and maximize the ability to reason mathematically about correctness of
the design. Although testing cannot be eliminated from the design/validation process, the
primary basis of belief in the dependability of the system must come from analysis rather
than from testing.

1.1 Recovery From Transient Faults

There is a growing concern over the impact of high-intensity radiated fields (HIRF) and
electromagnetic interference (EMI) on digital electronics. The electromagnetic environment
is becoming increasingly hostile at the same time electronic device dimensions are being
reduced—making the devices even more vulnerable to upset phenomena. The use of com-
posite materials in aircraft will further increase susceptibility. Although an electromagnetic
event may be of short duration, its effect may be permanent. This could occur as a result of
permanent physical damage or merely the corruption of a memory state of an otherwise func-
tional processor. Transient faults are believed to be much more prevalent than permanent
faults (i.e., typical failure rate 10 times the permanent rate).



Several approaches can be used to recover the state of memory in a transiently affected
digital processor. The simplest technique is to rely on the reading of new inputs to replace
corrupted memory. Of course, this does not give 100% coverage over the space of potential
memory upsets, but it is much more effective than one might expect at first glance. Since
control-law implementations produce outputs as a function of periodic inputs and a rela-
tively small internal state, a large fraction of the memory upsets can be recovered in this
manner. This accounts for the fact that although many systems in service are not designed
to accommodate transient faults, they do exhibit some ability to tolerate such faults.

Another important technique is the use of a watchdog timer. Since a transient fault can
(and frequently does) affect the program counter (PC), a processor can end up executing in
an entirely inappropriate place—even in the data space. If this happens, then the previous
technique becomes totally inoperative. The only hope in this situation is to recognize that
the PC is corrupted. A watchdog timer is a countdown register that sets the PC to a
pre-determined “restart” location if the timer ever counts down all the way to 0. In a
non-transiently affected processor, the watchdog timer is periodically reset by the operating
system.

Once a fault has been detected by a watchdog timer, the entire system may be “rolled-
back” to a previous state by use of a checkpoint— a previous dump of the dynamic memory
state to a secondary storage device of some kind. This technique has not been used very
often in flight control systems because of the unacceptable overhead of this type of operation.
A more appropriate technique is the use of majority-voting to replace the internal state of
a processor. It is important to note that this is done continuously rather than just after
a transient fault is detected. Of course, majority-voting can be expensive as well if the
dynamic state is not small.

1.2 Validation/Verification of Transient Fault Recovery

No matter what technique is used its effectiveness must be measured and incorporated in
the reliability analysis. This is much more important than one might first suspect. Since
a transient fault can potentially disable an otherwise good processor, a worst-case analysis
must increase the processor failure rate to include the transient fault rate. Because this rate
can be 10 times larger than the nominal permanent fault rate, this can be devastating to the
reliability analysis, unless a credible estimate of the fraction of transient faults that disable
a processor can be obtained. In figure 1 the probability of system failure as a function of
the fraction of recoverable transients (R) is plotted for a 4MR system. The Markov model
of figure 2 was solved to obtain this plot. The horizontal transitions represent transient
fault arrivals. The vertical transitions represent permanent fault arrivals. These arrive at
rate Ay and A, respectively. The backwards arc represents the removal of the effects of a
transient fault by the operating system. This is accomplished by voting the internal state.
State 1 represents the initial fault free state of the system. There are only two transitions
from state 1 due to the arrival of either a transient or permanent fault. These transitions
carry the system into states 2 and 4, both of which are not system failure states. All of the
transitions except one from these states are a result of second failures, which lead to system
failure states. The transition from state 2 back to state 1 models the transient-recovery
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Figure 1: Probability of System Failure As a Function of R

process. The transition from state 2 to state 4 models the situation where a processor that
is recovering from a transient fault experiences a permanent fault. The effect becomes even
more dramatic as the number of processors is increased, as shown in figure 3.

Approaches to the validation of computer systems susceptible to transient faults can be
categorized into two broad categories: empirical and analytic. Empirical approaches rely on
measuring the probability of successful recovery (R) and the recovery time (1/p) of the system
using fault-injection experiments. Analytic approaches seek to establish the transient-fault
immunity property (i.e. R = 1) of the system and calculate the value of p by mathematical
analysis. The empirical approach measures the probability of successful transient recovery
(i.e. R) and the distribution of recovery time using fault-injection experiments. The results
of the experiment are used to estimate the transient-fault recovery transition in the Markov
reliability model. The analytic approach relies on analysis to insure that R = 1. In other
words one must prove that the recovery technique always removes the effects of an arbitrary
transient within a bounded amount of time. In this approach, one does not rely on detection,
which is always imperfect anyway. Transient recovery is automatic, via continuous voting
and rewriting of state with voted values. The analysis must also be able to establish the
value of the upper bound on the time for transient recovery. In this way one is able to
calculate the value of p rather than measure it!.

The analytic approach does not completely eliminate the need for measurements. Mea-

ITo simplify the discussion, the reliability analysis process has been described in terms of a pure Markov
process. The actual distribution of recovery-time is more likely to be closer to a uniform distribution than an
exponential and thus a semi-Markov model would be used. The SURE program [3, 4] can be used to analyze
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suring (or estimating) the A’s (i.e. failure rates) in the reliability model is still necessary, but
time-consuming fault-injection experiments are not. Furthermore, the reliability analysis
does not depend on an empirical model of how a transient fault upsets a processor.

1.2.1  Advantages of Analytic Approach

The analytic approach has several clear advantages over the empirical approach. First,
confidence in the system does not rely primarily on end-to-end testing, which can never
establish the absence of some rare design flaw (yet more frequent than 107?) that can crash
the system. Second, the analytic approach minimizes the need for experimental analysis
of the effects of EMI or HIRF on a digital processor. The probability of occurrence of a
transient fault must be experimentally determined, but it is not necessary to obtain detailed
information about how a transient fault propagates errors in a digital processor. Third, the
role of experimentation is determined by the assumptions of the mathematical proof. The
testing of the system can be concentrated at the regions where the design proofs interface
with the physical implementation.

1.3 The Synergism Between Formal Verification and Reliability
Analysis

The analytic approach described above is in reality a synergism between formal verification
and reliability analysis. Formal methods prove formulas of the form

A-PREDICATE D NICE-PROPERTY
Reliability analysis calculates the probability

Prob[ A-PREDICATE ]

Also, formal methods offers an approach to overcoming a serious dilemma for the reliabil-
ity analyst—how can I assure myself that the reliability model itself is a valid representation
of the implemented system? Although the present work does not establish a formal con-
nection between the RCP functional specifications and the Markov model, key assumptions
of the Markov model are formally verified. In particular, the absence of any direct tran-
sition from the fault-free state to a death state depends upon the fault-masking property
established in the RS to US proof. Also the simplification of the reliability model under
the assumption that R = 1, is justified by the formal verification that 100% of the errors
produced by a single transient fault are flushed by the system.

this more general class of reliability model. It requires the mean and standard deviation of the recovery
time. Under the assumption of a uniform distribution of recovery, these parameters can be derived from the
upper bound on the time of recovery.



1.4 Overview of Previous Work

A major goal of the RCP project is to develop an operating system that provides the ap-
plications software developer with a reliable mechanism for dispatching periodic tasks on a
fault-tolerant computing base, which appears to him as a single ultra-reliable processor.

The following design decisions have been made toward that end:

the system is non-reconfigurable
the system is frame-synchronous
the scheduling is nominally static, non-preemptive

internal voting is used to recover the state of a processor affected by a transient fault

Although scheduling is typically static, RCP would accommodate an implementation that
used limited forms of dynamic scheduling, provided all the axioms about task execution
are satisfied. A hierarchical decomposition of the reliable computing platform is shown in
figure 4.

Uniprocessor System Model (US)

Fault-tolerant Replicated Synchronous Model (RS)

Fault-tolerant Distributed Synchronous Model (DS)

Fault-tolerant Distributed Asynchronous Model (DA)

| |
‘Clock Sync Property‘ Minimal Voting DA (DA _minv)

| |
‘Clock Sync Algorithm‘ Local Executive Model (LE)

Hardware/Software Implementation

Figure 4: Hierarchical Specification of the Reliable Computing Platform.

The top level of the hierarchy describes the operating system as a function that sequen-
tially invokes application tasks. This view of the operating system is called the Uniproces-
sor System layer (US). It is formalized as a state transition system and forms the basis
of the specification for the RCP. As in the Phase 1 report [1], this constitutes the top-level
specification of the functional system behavior defined in terms of an idealized, fault-free
computation mechanism. The specification is the correctness criterion to be met by all lower
level designs. The top level of the hierarchy describes the operating system as a function
that performs an arbitrary, application-specific computation.



Level 2 is called the Replicated Synchronous layer (RS). In this level an abstract view
of the system’s fault-tolerance capability is specified. Fault tolerance is achieved by voting
results computed by the replicated processors operating on the same inputs. Interactive
consistency checks on sensor inputs and voting of actuator outputs require synchronization
of the replicated processors. The RS level describes the operating system as a synchronous
system, where each replicated processor executes the same application tasks. The existence of
a global time base, an interactive consistency mechanism, and a reliable voting mechanism
are assumed at this level. Processors are replicated and the state machine makes global
transitions as if all processors were perfectly synchronized. Interprocessor communication is
hidden and not explicitly modeled at this layer. Suitable mappings are provided to enable
proofs that the RS layer satisfies the US layer specification. Fault tolerance is achieved using
exact-match voting on the results computed by the replicated processors operating on the
same inputs. Exact match voting depends on two additional system activities: (1) single
source input data must be sent to the redundant sites in a consistent manner to ensure that
each redundant processor uses exactly the same inputs during its computations, and (2)
the redundant processing sites must synchronize for the vote. Interactive consistency can
be achieved on sensor inputs by using Byzantine-resilient algorithms [5], which are probably
best implemented in custom hardware. To ensure absence of single-point failures, electrically
isolated processors cannot share a single clock. Thus, a fault-tolerant implementation of
the uniprocessor model must ultimately be an asynchronous distributed system. However,
the introduction of a fault-tolerant clock synchronization algorithm, at the DA layer of the
hierarchy, enables the upper level designs to be performed as if the system were synchronous.

Level 3 of the hierarchy, the Distributed Synchronous layer (DS), breaks a frame
into four sequential phases:

| compute | broadcast , vote ~ sync

| | | | 1
clock clock
mterrupt mterrupt

Activity on the separate processors is still assumed to occur synchronously. Interprocessor
communication is accomplished using a simple mailbox scheme. Each processor has a mailbox
with bins to store incoming messages from each of the other processors of the system. It
also has an outgoing box that is used to broadcast data to all of the other processors in the
system. The DS machine must be shown to implement the RS machine.

1. compute

e frame started by clock interrupt
e execute all tasks scheduled in current frame

e multiple frames constitute a cycle



2. broadcast

e broadcast outputs of task execution to other processors

e usually just a subset of the outputs are broadcast
3. vote

e vote broadcast data

e replace memory with voted values
4. sync

e execute sync algorithm

e wait for next clock interrupt

Each processor in the system executes the same set of application tasks every cycle. A
cycle consists of the minimum number of frames necessary to define a continuously repeating
task schedule. Each frame is frame_time units of time long. A frame is further decomposed
into 4 phases. These are the compute, broadcast, vote and sync phases. During the compute
phase, all of the applications tasks scheduled for this frame are executed. The results of all
tasks that are to be voted this frame are then loaded into the outgoing mailbox. During
the next phase, the broadcast phase, the system waits a sufficient amount of time to allow
all of the messages to be delivered. As mentioned above, this delay must be greater than
maxb + 6, where maxb is the maximum communication delay and ¢ is the maximum clock
skew. During the vote phase, each processor retrieves all of the replicated data from every
other processor and performs a voting operation. Typically, this operation is a majority vote
on each of the selected state elements. The processor then replaces its local memory with the
voted values. It is crucial that the vote phase is triggered by an interrupt and all of the vote
and state-update code be stored in Read-Only Memory (ROM). This will enable the system
to recover from a transient even when the program counter has been affected by a transient
fault. Furthermore, the use of ROM is necessary to ensure that the code itself is not affected
by a transient.? During the final phase, the sync phase, the clock synchronization algorithm
is executed. Although conceptually this can be performed in either software or hardware,
we intend to use a hardware implementation.

At the fourth level, Distributed Asynchronous layer (DA), the assumptions of the
synchronous model are discharged. A fault-tolerant clock synchronization algorithm [6] can
serve as a foundation for the implementation of the replicated system as a collection of
asynchronously operating processors. Dedicated hardware implementations of the clock syn-
chronization function are being pursued by other members of the NASA Langley staff [7, 8, 9].
Also, this layer relaxes the assumption of synchrony and allows each processor to run on its

?In the design specifications, these implementation details are not specified explicitly. However, it is clear
that to successfully implement the models and prove that the implementation performs as specified, such
implementation constructs will be needed.



own independent clock. Clock time and real time are introduced into the modeling formal-
ism. The DA machine must be shown to implement the DS machine provided an underlying
clock synchronization mechanism is in place.

The basic design strategy is to use a fault-tolerant clock synchronization algorithm as the
foundation of the operating system. The synchronization algorithm provides a global time
base for the system. Although the synchronization is not perfect, it is possible to develop
a reliable communications scheme where the clocks of the system are skewed relative to
each other, albeit within a strict known upper bound. For all working clocks p and ¢, the
synchronization algorithm provides the following key property:

|ep(T) = ey(T)] < &

which asserts that the difference in real time for two clocks reading the same logical time is
bounded by ¢, assuming that there is a sufficient number of nonfaulty clocks. This property
enables a simple communications protocol to be established whereby the receiver waits until
maxb + 6 after a pre-determined broadcast time before reading a message, where maxb is
the maximum communication delay.

Figure 5 depicts the generic hardware architecture assumed for implementing the repli-
cated system. Single-source sensor inputs are distributed by special purpose hardware ex-
ecuting a Byzantine agreement algorithm. Replicated actuator outputs are all delivered in
parallel to the actuators, where force-sum voting occurs. Interprocessor communication links
allow replicated processors to exchange and vote on the results of task computations. As
previously suggested, clock synchronization hardware may be added to the architecture as
well.

The basic concept of task execution is illustrated in figure 6.

Tasks receive inputs from the outputs of other tasks (illustrated by horizontal arrows)
or from sensors (shown by vertical arrows). The outputs of a task are not available to
other tasks until after termination of the task. There is therefore no use of an intertask
communication mechanism such as the Ada rendezvous.

Task results are assigned to different cells within the state, as illustrated in figure 7.

The Clock Sync Property layer and Clock Sync Algorithm layer represent the recently
revised version of the Interactive Convergence clock synchronization theory developed by

SRI [10].

1.5 Availability of Specifications and Proofs

Both the DA_minv model and the LE model are specified formally and have been verified
using the EHDM verification system. All specifications and proofs described in this report are
available electronically via the Internet using anonymous FTP or World Wide Web (WWW)
access. Anonymous FTP access is available through the host air16.larc.nasa.gov using
the path:
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I Distribution Network |

Interprocessor
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Replicate e Replicate
1 R
Interprocessor
Communication Link
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Figure 5: Generic hardware architecture.

pub/fm/larc/RCP-specs

The specification files are provided in two formats: 1) a set of plain ASCII source files
bundled using the Unix tar utility, and 2) a single file in the “dump” format used by EHDM.
Each version is compressed using both gzip and Unix compress. The compressed files range
in size from 100 to 250 kilobytes.

WWW access to the FTP directory is provided through the NASA Langley Formal
Methods Program home page:

http://shemesh.larc.nasa.gov/fm-top.html
or the specific page for the Formal Methods FTP directory:

file://air16.larc.nasa.gov/pub/fm/larc

2 Formalizing the DA_minv and LE Layers

The RS model introduced a very abstract view of the execution of application tasks on a
local processor. The DS and DA models concentrated on the distributed processing issues of
the design and did not develop the task execution aspects of the system any further. In the
LE model, a more detailed specification of the activities on a local processor are presented.
In particular, three areas of activity are elaborated in detail:

10



o task dispatching and execution,
e minimal voting, and

e interprocessor communication via mailboxes.

These are presented in sections 3, 4, and 5, respectively. An intermediate model, DA_minv,
that simplified the construction of the LE model is used. Some of the refinements occur in
the DA_minv model and some in the LE model. For example, the concept of minimal voting
is addressed in considerable detail in the DA_minv model.

2.1 Overview of Task Execution and Voting

To understand the DA_minv and LE formalizations, a detailed presentation of the abstract
model of task execution used in the upper levels is necessary. We begin with a review of this
model. The abstract model was based upon the following functions:

succ : function[control_state — control_state]
Jr . function[Pstate — control_state]

I . function[Pstate — Pstate]

It . function[Pstate, cell — cell_state]

fe . function[inputs x Pstate — Pstate]

Is . function[Pstate — MB]

fo . function[Pstate, MBvec — Pstate]

Ja . function[Pstate — outputs]

recv. : function[cell, control_state, nat — bool]
dep : function[cell, cell, control_state — bool]

The meaning of each of these functions is summarized in table 1. These functions define

succ | returns next control state

fx extracts control state

fn increments the frame counter

I extracts cell (e.g. task) state

fe executes tasks and updates Pstate

fs selects and copies cells from memory into outgoing mailbox slot

fo votes mailbox values and overwrites cell states

fa denotes the selection of state variable values to be sent to the actuators

recv | true iff cell ¢’s state should have been recovered before the specified frame

dep | true iff cell ¢’s value in the next state depends on cell d’s value in the current state

Table 1: RS abstract functions

task scheduling, mailbox usage and voting on a single processor. To maximize generality, a
minimal set of axiomatic properties of these functions was sought that would enable a proof

that RS D US.

11



succ_ax : AXIOM fi(f.(ps)) = succ( fi(ps))

control_nc : AXIOM fi(f.(u, ps)) = fr(ps)

cells.nc : AXIOM fi(f.(ps),c) = fi(ps,c)

full_recovery : AXTIOM H > recovery_period D recv(c, K, H)

initial _recovery : AXIOM recv(e, K,H) D H > 2

dep_recovery : AXTIOM recv(c, succ(K ), H +1) A dep(c,d, K) D recv(d, K, H)
components_equal : AXIOM fi,(X)= fr(Y) A (Ve: filX,e)= fi(Y,¢)) D X =Y

control_recovered : AXIOM
maj_condition(A) A (V p: member(p, A) DO w(p)= fs(ps))
> frlfo(Y,w)) = fi(ps)

cell_recovered : AXIOM
maj_condition(A)
A (VY p:member(p, A) D w(p)= fs(fe(u, ps)))
AN fu(X)= KA fi(lps) = K A dep_agree(c, I, X, ps)
D [l fo(felu, X),w),¢) = fil fe(u, ps),¢)

vote_maj : AXIOM
maj_condition(A) A (V p: member(p, A) DO w(p)= fs(ps)) D fu(ps,w)=ps

In the LE model, interpretations are given for each of the functions listed in table 1 and
shown to satisfy these axioms.

The development of the LE model proceeded in two steps. The first step (i.e. DA_minv)
produced an elaboration of the functions f,, recv, dep, fr and f;. The next step (i.e. LE)
produced an elaboration of the functions f,, f. and succ. This is illustrated in figure 8. The
first set of interpretations (in DA_minv) all deal with the voting processes of RCP. In the
RCP Phase 2 paper [2] three types of voting were discussed—continuous, cyclic and minimal.
In Appendix B of [2] interpretations of these functions were given for both the continuous
and cyclic voting methods of voting. The more efficient minimal-voting method has always
been the method-of-choice for RCP, but the mechanical proofs were incomplete and were
thus not included in [2]. However, the continuous and cyclic voting proofs were sufficient to
establish that the abstract axiomatic definitions of the RS level were consistent.

Details about the completed mechanical verification of the minimal voting approach can
be found in section 4. There the functions f,, recv and dep are defined in terms of other
functions that are dependent upon the particular application.

12
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Figure 6: Task Execution
Frame 1 Task 1 cell[l] := fi(u,cell[7]);
Task 2 cell[2] := fo(cell[l])
Frame 2 Task 3 cell[3] := f3(u, cell[2]);
Task 4 cell[4] := fa(cell]3])
Frame 3 Task 5 cell[5] := fs(u);
Task 6 cell[6] := fo(u, cell[4])
Frame 4 Task 7 cell[7] := fz(cell[5], cell[6])
Figure 7: Assignment of Task Results to Cells

DA

Y

DA _minv (interpretations for: fz, fi, f,, recv and dep)

Y

LE

(interpretations for: f,, f., fs and succ)

Figure 8: Two Step Refinement into LE Model
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2.2 Specification Method: EaDM Mappings

Unlike the higher levels of the hierarchy, the DA_minv and LE models were developed using
the Ehdm mappings capability.

2.2.1 Example

The basic idea of Ehdm mappings is the substitution of an uninterpreted TYPE or function
with an interpreted one. This is best explained by way of example. Consider

high : MODULE
THEORY
f:FUNCTION|nat — nat]
z : VAR nat
flax : AXIOM f(z) > 0
T:TYPE
t: VAR T
¢ : FUNCTION|[T — nat]
g-ax: AXIOM g¢(t) > 0

END high

This specification has two uninterpreted functions f and ¢. Each function is constrained
by an axiom. Note that both the domain and the body of ¢ are uninterpreted. This specifi-
cation may then be refined into the more detailed specification below, named low:

low : MODULE
THEORY

z: VAR nat
F :FUNCTIONJ[nat — nat] = (A 2 :100)

T_amp : TYPE = nat
y: VAR T_imp
G :FUNCTION|[T.mp — natj]=(Ay:y+1)

END low

The function f is refined into F' and ¢ is refined into G. The uninterpreted type T is
replaced with nat. The intended connection between module high and module low must be
made formal. This is done by the following Fhdm mapping module:
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to_low : MODULE
MAPPING high ONTO low

f— F
T — T_.mp
g— G

END

A mapping module consists of a list of associations denoted by —. On the left side of
an —, an object from the high-level specification is given. The corresponding object in the
lower level specification is given on the right side of an —, When the mapping module is
typechecked, Ehdm generates a file containing a list of obligations that must be proved:

high_to_low : MODULE

USING low

EXPORTING ALL WITH low
THEORY

z : VAR nat
f.ax : OBLIGATION F(z) > 0

t: VAR T_mp
g-ax : OBLIGATION G(t) > 0

END high_to_low

In this example, discharging the obligations is simple.

2.2.2 RCP Specifics

In figure 9, the main modules associated with the DA_minv and LE models are given.

The horizontal arrows represent USINGs and the down arrows represent MAPPING
modules. The modules where the RS-level task-execution functions are mapped into are
given in table 2.

The list of all of the non-identical name associations in the mapping modules follows:

null_memory — mem0
cells — cell_Lmem

MB — MBbuf
null_memory — mem0
pred — pred_cs
=[cell_state] — CS_eq
=[control_state] — cnst_eq
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rcp_defs generic FT «—— DA

to_imp to_both v to_ DA _minv

rcp_defs_imp «<——— gen_com <——— minimal_v

DA_minv

to_hw to_gc_hw to_both_hw to LE

rcp_defs_hw

gc_hw

minimal_hw <— L E

Figure 9: DA to DA_minv to LE Mapping Structure

function DA _minv module | LE module
succ : gc_hw

fr : | gen_com

fn : | gen_com

f : | gen_com

fe : minimal_hw
fs : gc_hw

fo : | minimal v

fa : | minimal v

recv : | minimal v

dep : | minimal v

Table 2: The modules where the abstract task-execution functions are interpreted.

2.3 The Model of Processor State

In RS, DS and DA, Pstate was uninterpreted. The details about how the execution of tasks
changed the state of a processor were left unspecified. The function “f.”, which represents
the change that occurs as a result of executing all of the tasks, was left uninterpreted also.
The only changes to Pstate that were elaborated in some detail were those associated with
replacing the local state with voted values. This was accomplished by the function “f,”.
The next step in refining the RCP into a detailed design involved the elaboration of the
uninterpreted functions. This required a more detailed description of Pstate. In this section

we will describe the elaboration of the processor state Pstate first in the DA_minv level then

in the LE level.
At the DA _minv level, Pstate is interpreted as follows:

Pstate : TYPE = RECORD
control : control_state,
memry : memory
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END

The state of a processor is partitioned into two components: the control state and the
memory. The first component represents the state of the machine associated with the oper-
ating system; the second component represents the rest of the state. However, both fields of
this record are still uninterpreted types:

control_state : TYPE
memory : TYPE

At this level, it is assumed that the frame counter can be retrieved from the control_state
field via a function frame, and that the contents of cells can be retrieved from the memry
field via a function cells and replaced in memory via a function write_cell:

frame : FUNCTION]control_state — frame_cntr]
cells : FUNCTION|[memory, cell — cell_state]
write_cell : FUNCTION[memory, cell, cell state — memory]

The semantics associated with the functions that operate on Pstate are captured in two
axioms:

cells_ax : AXTOM cs_length(cells(mem, cc)) = c_length(cc)
write_cell_ax : AXIOM cs_length(cs) = c_length(xx) D
cells(write_cell(mem, xx, cs), cc)
=1IF cc =xx
THEN cs
ELSE cells(mem, cc) END

Note that the write_cell_ax only applies when cs_length(cs) = c_length(xx). The reason for
this is that the contents of different cells can be different sizes. This prevents the rewriting
of a cell with a cell_state that has an inappropriate size.

At the DA_minv level of specification, the memory of the system is modeled as a collection
of cells. Thus, equality of memories is defined by the following axiom:

memory_equal : AXIOM (V ¢ : cells(C',¢) = cells(D,¢)) D C =D

Note that there is other memory in the system that is not modeled here. Examples of
such memory include temporary storage and the program code, which is stored in ROM. The
specifications described in this section are located in module rcp_defs_.imp. These details are
abstracted away in the upper levels through use of the Ehdm equality-mapping capability.
Equality over cell_states is mapped onto the following function at the LE level:

csl, cs2, cs3: VAR cell state
CS_eq : FUNCTION]cell_state, cell_state — bool] =
(A csl, cs2:
csl.len =cs2.len A (V2 :2 <csllen D csl.blk(z) = cs2.blk(z)))
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EHDM requires that one demonstrate that this function is an equality relation. The following
obligations are generated by the Ehdm system:

cell_state_varl : VAR cell_state
cell_state_var2 : VAR cell_state
cell_state_var3 : VAR cell_state
control_state_varl : VAR control_state
control_state_var2 : VAR control_state
control_state_var3 : VAR control_state
cell_state_reflexive : OBLIGATION
CS_eq(cell_state_varl, cell state_varl)

cell_state_symmetric : OBLIGATION
CS_eq(cell_state_varl, cell state_var2)
D CS_eq(cell_state_var2, cell_state_varl)

cell_state_transitive : OBLIGATION
CS_eq(cell_state_varl, cell state_var2)
A CS_eq(cell_state_var2, cell_state_var3)
D CS_eq(cell_state_varl, cell_state_var3)

control_state_reflexive : OBLIGATION
cnst_eq( control _state_varl, control_state_varl)

control_state_symmetric : OBLIGATION
cnst_eq(control _state_varl, control_state_var2)
D cnst_eq(control_state_var2, control_state_varl)

control state_transitive : OBLIGATION
cnst_eq(control _state_varl, control_state_var2)
A cnst_eq(control_state_var2, control_state_var3)
D cnst_eq(control_state_varl, control_state_var3)

as well as some congruence properties not shown here.

In the LE model, both components of Pstate (i.e., control and memry) are given detailed
interpretations. These interpretations are described in the next two subsections.

2.3.1 LE Model of Memory

In the LE model, the concept of memory is extended significantly beyond that of the upper
levels of the hierarchy. The type memory is defined as follows:

address : TYPE FROM nat WITH (A n : n < mem_size)
memory : TYPE IS FUNCTION|[address — wordn]
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Thus, in the LE model, memory is represented as a bounded array of words. The value of
mem size is application or machine dependent. The type of wordn is still uninterpreted at
this level (cf. leaving the number of bits in the word unspecified.)

The type cell is the index for components of computation state and the type cell_state
is the information content of computation state components. At the LE level a cell_state
becomes a fixed-length block of memory as illustrated in figure 10.

} cell 1

cell 2

Fcell3

cell 4

cell5

} cell 6

Figure 10: Memory Cells: blocks of words

Formally, a block of memory is represented as

mem block_ty : TYPE =
RECORD
len : addr_len_ty,

blk : memory_ty
END

The len field indicates the maximum address in the block. All the values of the blk field
above len are irrelevant. The cell_state type is interpreted as a mem _block_ty:

cell_state : TYPE IS mem_block_ty

The uninterpreted function cell_map assigns memory locations to all cells in the system:
cell_map : FUNCTION]cell — address_range]

The following three axioms constrain this function.

cell_map_length_ax : AXIOM length(cell_map(cc)) < MBmem_size
cells_for_all_ax : AXIOM (3 cc : address_within(adr, cell_map(cc)))

cell_separation : AXIOM(¢q # ¢3) D address_disjoint(cell_map(¢q ), cell_map(cy))
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The first axiom requires that the size of every cell is no larger than the size of the mailbox.
The second axiom states that every memory location is covered by some cell. The third
axiom says that cells do not overlap in memory; address_disjoint is defined as

address_disjoint : FUNCTION]/address_range_ty, address_range_ty — bool] =
(Aar, ar2 :ardow > ar2.high v ar2.low > ar.high)

In the upper level models, the function cells was used to extract a cell from memory. This
function is implemented in the LE model by a function named cell_mem as follows:

cell_mem : FUNCTION[memory, cell — cell state] =
(A mem,cc:
cs0(cc) WITH
[len := length(cell_map(cc)), blk := mshift(mem, cell_map(cc).low)])

mshift : FUNCTION[memory, address — memory| =
(A mem, low :
(An:IF n+low < memsize THEN mem(n 4 low) ELSE word0 END IF))

The mapping produces the following obligation:
cells_ax : OBLIGATION cs_length(cell_mem(mem, cc)) = c_length(cc)
The functions c_length and cs_length are defined as follows:

c_length : FUNCTION]cell — nat] = (A cc: length(cell_map(cc)))
cs : VAR cell_state
cs_length : FUNCTION]|cell state — nat] = (A cs:cs.len)

The function write_cell is used to replace the contents of a cell in memory with a cell_state.

write_cell : FUNCTION[memory, cell, cell state — memory| =
(A mem, cc,CS:
(A adr:
IF address_within(adr, cell_map(cc)) A adr <-cell_map(cc).low < CS.len
THEN CS.blk(adr <-cell_map(cc).low)
ELSE mem(adr) END IF))

The function write_cell is slightly more general than the axiom at the DA_minv level requires.
It allows one to update a cell using a cell_state of a different size than the cell being updated.
Nevertheless, the constraining axiom at the upper level,

write_cell_ax : OBLIGATION
cs_length(cs) = c_length(xx)
D cell_mem(write_cell(mem, xx, cs), cc)
=1IF cc =xx
THEN cs
ELSE cell_mem(mem, cc) END

null_memory_ax : OBLIGATION cell_.mem(mem0, cc) = ¢s0(cc)

is shown to be satisfied by this implementation.
The specifications in this subsection are located in the rcp_defs_hw.spec module.
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2.3.2 LE Model of control_state

The control state of the processor is defined as follows:

control state : TYPE =
RECORD
frame : frame_cntr,
mmu : mmu_state,
superflag : boolean,
errorflag : boolean

END

The frame field indicates the current frame number, which is incremented by the operating
system modulo the number of frames per cycle. The mmu field contains the memory man-
agement registers. The superflag is a boolean flag that indicates whether the processor is
in supervisor mode. Certain instructions such as loading the memory management registers
can only be performed while in supervisor mode. Finally the errorflag field indicates whether
a malfunction has occurred.

In the upper-levels of RCP, the only component of control_state that is used is frame. The
other fields of control_state are abstracted away by mapping equality on control_states (i.e.
=[control_state]) onto a function cnst_eq, defined as follows:

cnst_eq : FUNCTION]control_state, control state — bool] =
(A cnl, cn2 :cnl.frame = cn2.frame)

Thus, equality of control states in the upper levels of the model only constrains the frame
fields to be equal.

3 Task Dispatching and Execution

Tasks are executed during the compute phase of a frame. Different sequences of tasks
can be executed during different frames. A schedule that consists of a 2-frame cycle (i.e.
schedule_length = 2) is illustrated in figure 11. The particular cell that stores the results of

cl1|c1? c13 //Aczj c2p c2B czz//A cl1|c1? 013@

1 2 3 ¥ 3 3 4 1 2 3

fr fr+1 fr+2 fr+3

Figure 11: Structure of frames and subframes

the execution of a task during a particular frame and subframe is determined by the function
sched cell:
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sched_cell : FUNCTION][frame cntr, sub_frame — cell]

This function is uninterpreted in DA_minv and remains so in LE. The number of subframes
can vary from one frame to another; therefore, an additional function is specified that returns
the number of subframes in a given frame:

num_subframes : FUNCTION]|frame_cntr — nat]

For convenience, the inverse functions are also defined. Given a cell, two functions indi-
cate the frame and subframe that a particular cell (i.e. task) executes.

cell frame : FUNCTION]cell — frame_cntr]
cell subframe : FUNCTION]cell — sub_frame]

The relationship between these functions is given by an axiom:

sched_cell_ax : AXIOM
mm = cell_frame(¢) A k = cell_subframe(c)
& sched_cell(mm, k) = ¢ A k < num_subframes(mm)

3.1 DA _minv Refinements

In the upper four levels, the dispatching and execution of tasks were completely abstract.
The function f.:

fe : FUNCTION][inputs, Pstate — Pstate]

defined the state change on non-faulty processors but was uninterpreted. At the DA_minv
level, we specify in more detail the steps involved in task execution. The function f. is
interpreted as follows:

fe : FUNCTION][inputs, Pstate — Pstate| =
(A u, ps:
ps WITH
[(memry) := exec(u, ps, num_subframes(frame(ps.control))).memry|)

where

exec : RECURSIVE FUNCTION]inputs, Pstate, sub_frame — Pstate] =
(A u, ps,k:
IF k£ = 0OTHEN ps
ELSEexec_task(u, exec(u, ps,k <1),k<1)
END)BY exec_meas
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Each call to the uninterpreted function exec_task
exec_task : FUNCTION][inputs, Pstate, sub_frame — Pstate]

corresponds to the dispatching and execution of a single task. It is constrained by three
axioms:

exec_task_ax : AXIOM
sched_cell(frame(ps.control), ¢) # ¢
D cells(exec_task(u, ps,q).memry, c) = cells(ps.memry, ¢)

exec_task_ax_2 : AXIOM
frame(exec_task(u, ps, ¢).control) = frame(ps.control)

cell_input_constraint : AXIOM
X.control = Y.control

A sched_cell(frame( X .control), ¢) = ¢
A (Y d :cellinput(d,c) D cells_match(X,Y,d))
D cells_match(exec_task(u, X, ¢q), exec_task(u,Y, q),c)

The first axiom requires that all of the cells other than the one assigned to the executing
task remain unchanged.® The second axiom states that the execution of a task cannot change
the current frame number. The third axiom states that the execution of the same task on
two different Pstates, X and Y, that have equivalent control_states and where all of the inputs
to the tasks are the same, will produce the same outputs.

Note that the specification says nothing about the values that are written into the cell
associated with the task, because it is dependent on the particular workload executing on
the RCP. Note also that nothing is said about the execution time of the individual tasks.
The DA specification merely requires that all of the tasks complete within the time allocated
for the compute phase of the system.

Figure 12 shows the implementation tree for f.. The arrows represent the “calls” relation.
The module that a function is defined in is listed in square brackets. Functions that are still
uninterpreted in the LE module are underlined. The specifications in this subsection are
located in the gen_com module.

3.2 LE Refinements

At the DA_minv level the f. function is defined in terms of a recursive function exec. The
function exec invokes an uninterpreted function exec_task to execute a task. In the LE model
exec_task is defined as follows:

3In general this would not be the case for a task running on a faulty processor; however, this function is
only used in the state-transition relations where the condition healthy(p) > 0 is satisfied.
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f-c [gen_com]
exec [gen_com] num_subframes
exec_task [gc_hw]
t_write_set sched _cell load_mmu [gc_hw]| “write_em [gc_hw]
cell_map MMU [mmu_def]

Mleé [mmu_def] MMU _write [mmu_def]

address_within

Figure 12: Function f. implementation tree

exec_task : FUNCTION][inputs, Pstate, sub_frame — Pstate| =
(A u,PS,csf : LET tws := t_write_set(u, PS, csf) IN
LET ¢ := sched_cell((PS.control).frame, csf) IN
LET loaded_PS := load_mmu(set_super(PS),c) IN
write_em(tws, unset_super(loaded_PS), tws.num)
WITH [control := PS.control])

This function delineates the change to Pstate that accrues as a result of executing a task. A
task running on a working processor will write its outputs into the appropriate cell locations
in main memory. The set of memory locations that are altered by an executing task is
assumed to be finite and is modeled as a bounded list of records of TYPE mup, where

mup : TYPE = RECORD addr : address,

val : wordn

END

The field addr contains the address and val contains the new value to be written into that

address. The list is of TYPE muplist, where

mupseq : TYPE = FUNCTION|[nat — mup]
muplist : TYPE = RECORD num : nat, mups : mupseq END

The function t_write_set returns such a list (i.e. of type muplist) corresponding to the current
task’s outputs.
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t_write_set : FUNCTION][inputs, Pstate, sub_frame — muplist]
load_mmu : FUNCTION|Pstate, cell — Pstate] =
(A PS,c: MMU(PS, word0, cell_map(c).low, cell_map(c).high, true,false))

It is expected that the muplist produced by redundant tasks executing on non-faulty proces-
sors would be identical and would only alter appropriate locations in memory. A recovering
task may attempt to write into an erroneous location. Consequently, t_write_set is a function
of the full Pstate and the current inputs and not merely the task name and its inputs. The
MMU prevents an attempt to write in an inappropriate location from actually occurring.
The function write_em is called by exec_task to update Pstate in accordance with the values
in muplist. This takes place after the memory management unit registers have been loaded
by the function load_mmu. Implicit in this definition is the requirement that the registers are
loaded correctly even on a recovering processor (i.e. non-faulty but not necessarily contain-
ing a recovered memory). Clearly this operating system code must not rely on any dynamic
memory—the cell locations must be hard-coded into ROM.

The recursive function write_em is called by exec_task to write to memory using the
MMU. The function write_em updates Pstate with all of the values in the muplist produced
by t_write_set.

write_em : RECURSIVE FUNCTION|[muplist, Pstate, nat — Pstate] =
(Aml, PS,i:
IF : =0 THEN PS ELSE
write_em(ml, MMU(PS, ml.mups(i <1).val, ml.mups(i <1).addr, 0, false, true), pred(z))
END IF)

BY we_meas
The mapping module from DA_minv to LE is of the form:
cebuf — cebuf
cnbuf — cnbuf
cell_frame — cell frame

exec_task — exec_task

3.3 Specification of the MMU

In the LE model a set of outputs associated with a task’s execution is written into specific
memory locations. The values produced by the task are not specified: only the locations
of the addresses that are written by a task are considered. As mentioned in the earlier
RCP papers, a major consideration is the prevention of a working, but not fully recovered,
processor from writing into a memory region not assigned to it. Thus, in the LE model
a memory-management unit (MMU) is specified that sits between the processor and the
memory.
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In this section, the abstract specification of a MMU is presented. The MMU unit contains
registers that control which portions of memory can be written into. The registers are of
type mmu_state.

address_range : TYPE FROM addrs WITH () aa : aa.high > aa.low)
mmu state : TYPE IS address_range

The MMU is defined as follows:

MMU : FUNCTION]|Pstate, wordn, address, address, bool, bool — Pstate] =
(A PS,w,a,b,setflag, RWflag :
IF setflag THEN MMU_set(PS,a,b) ELSE
IF RWflag THEN MMU_write(PS, w,a) ELSE PS END IF)

This function calls MMU _set to load the MMU registers and MMU _write to write memory:

MMU _set : FUNCTION]|Pstate, address, address — Pstate] =
(APS,a,b:
IF (PS.control).superflag THEN
IF « < b THEN
PS WITH
[control := PS.control WITH
[mmu := mmust_.0 WITH [low := a, high := b]]]

ELSE
PS WITH |control := PS.control WITH [errorflag := true]]
END IF
ELSE PS WITH [control := PS.control WITH [errorflag := true]]
END IF)

MMU _write : FUNCTION]|Pstate, wordn, address — Pstate| =
(APS,w,a:
IF address_within(a, (PS.control).mmu)
THEN PS WITH [memry := PS.memry WITH [a:= w]]
ELSE PS END IF)

The processor can only load the MMU registers while in supervisor mode.

3.4 Verifications Associated With f.-Related Refinements

Since the function exec_task was constrained by three axioms at the DA_minv level, the
mappings to the LE implementation generated three obligations:
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exec_task_ax : OBLIGATION
sched_cell(Frame(ps.control), ¢) # ¢
D CS_eq( cell_mem(exec_task(u, ps,q).memry, c), cell_mem(ps.memry, c))

exec_task_ax_2 : OBLIGATION
Frame(exec_task(u, ps, q).control) = Frame(ps.control)

cell_input_constraint : OBLIGATION
cnst_eq( X .control, Y.control)
A sched_cell(frame( X .control), ¢) = ¢
A (V d :celliinput(d,c) D cells_match(X,Y,d))
D cells_match(exec_task(u, X, ¢q), exec_task(u,Y, q),c)

Note that the obligations differ from the axioms in the upper level by the replacement of
the equalities between cell_states and control_states with their mapped equivalence relations,
CS_eq and cnst_eq, respectively.

3.4.1 Proof of exec_task_ax

The proot of this obligation establishes that any cell ¢ that is not the one associated with
the currently executing task (i.e. sched_cell(Frame(ps.control),q)), will not be altered by the
execution of the task. This is verified by proving the following lemma using induction on
nn.

Is_et : FUNCTION]inputs, sub_frame, cell, address, muplist, nat — bool]
(A u, csf,c, adr, tws, nn:
(V ps : LET cc := sched_cell((ps.control).frame, csf)
IN
address_within(adr, cell_map(c))
A nn < tws.num A (ps.control).mmu = cell_map(cc) A cc # ¢
D write_em(tws, ps, nn).memry(adr) = ps.memry(adr)))

Is_et_lem : LEMMA Is_et(u, csf,c, adr, tws, nn)
Proof of Is_et_lem: We first establish a lemma:

etll : LEMMA

cc = sched_cell((ps.control).frame, csf) A (ps.control).mmu = cell_map(cc)
A address_within(adr, cell_Lmap(c)) A nn < tws.num A cc # ¢

D write_em(tws, ps, nn).memry(adr) =

(IF nn < 0 THEN ps ELSE
write_em(tws, (LET tmnl := tws.mups(pred(nn)) IN

IF address_within(tmnl.addr, (ps.control).mmu) THEN
ps WITH[memry := ps.memry WITH
[(tmnl.addr) := tmnl.val]]
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ELSE ps END IF),

pred(nn))
END IF).memry(adr)

from the definition of write_em, MMU and MMU _write. The base case of the induction (i.e.
nn = 0) follows directly from this lemma. The induction step is:

Iset lems: LEMMA
Is_et(u, csf,c, adr, tws, nn) D Is_et(u, csf,c, adr, tws, nn + 1)

The first step is to establish:

ets2 : LEMMA
cc = sched_cell((ps.control).frame, csf)
A (ps.control).mmu = cell_map(cc)
A nn +1 < tws.num
A cc # ¢
A address_within(adr, cell_map(c))
A ls_et(u, csf, ¢, adr, tws, nn)
A address_within(tws.mups(nn).addr, (ps.control).mmu)
D ps.memry(adr) =
(ps WITH
[memry := ps.memry WITH
[(tws.mups(nn).addr)
:= tws.mups(nn).val]]).memry(adr)

This is a direct result of the fact that cells do not overlap:

cell_separation : AXIOM
(c1 # ¢2) D address_disjoint(cell_map(cy), cell_map(cz))

where

address_disjoint : FUNCTION]/address_range_ty, address_range_ty — bool]

(Aar, ar2:arlow > ar2.high vV ar2.low > ar.high)

We next let ps2 represent

(ps WITH

[memry := ps.memry WITH
[(tws.mups(nn).addr)
:= tws.mups(nn).val]])

in lemma ets2 and use Is_et with ps substituted with ps2. This yields ets3:
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ets3 : LEMMA
cc = sched_cell((ps.control).frame, csf) A (ps.control).mmu = cell_map(cc)
A nn +1 < twsnum A cc # ¢ A address_within(adr, cell_map(c))
A ls_et(u, csf,c, adr, tws, nn)
A address_within(tws.mups(nn).addr, (ps.control).mmu)
A ps2 =
(ps WITH
[memry := ps.memry WITH
[(tws.mups(nn).addr)
:= tws.mups(nn).val]])
D (write_em(tws, ps2, nn)).memry(adr) = ps.memry(adr)

Then from lemma ets3 and lemma etll with nn + 1 substituted for nn, we have:

ets6 : LEMMA
cc = sched_cell((ps.control).frame, csf)
A (ps.control).mmu = cell_map(cc)
A nn +1 < tws.num
A cc # ¢
A address_within(adr, cell_map(c))
A lIs_et(u, csf, ¢, adr, tws, nn)
D write_em(tws, ps, nn + 1).memry(adr) = ps.memry(adr)

The induction step follows from ets6 and the definition of Is_et.

Q.E.D.

3.4.2 Proof of exec_task_ax_2

The proof of the exec_task_ax_2 obligation follows directly from the definition of exec_task.

3.4.3 Proof of cell_input_constraint

The proof of cell_input_constraint:

cell_input_constraint : OBLIGATION
cnst_eq(X.control, Y.control) A sched_cell(frame(X .control), ¢) = ¢
A (V d :celliinput(d,c) D cells_match(X,Y,d))
D cells_match(exec_task(u, X, ¢), exec_task(w,Y, ¢q),c)

involves a significant amount of rewriting and the use of the following lemma about the
function write_em:
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write_em_prop : LEMMA
n < tws.num
D write_em(tws, XX, n).memry(addr)
= LET im := smallest_adr_n(tws, addr,nn) IN
IF match_exists_n(tws, addr,n) A address_within(addr, (XX.control).mmu)
THEN tws.mups(im).val
ELSE XX.memry(addr) END IF

The proof of write_em is accomplished by induction on n. This proof is very tedious and will
not be discussed here; it is fully elaborated in the specifications.

After rewriting cell_input_constraint with the definitions of cells_match, exec_task, CS_eq
and cnst_eq, it becomes:

cic2 : LEMMA cnst_eq( X .control, Y.control)
A sched_cell(frame( X.control), ¢) = ¢
A (V d :celllinput(d,c) D cells_match(X,Y,d))
D CS_eq(cell_mem(write_em(t_write_set(u, X, q),
unset_super(load_mmu(set_super( X ), sched_cell(( X .control).frame, q))),
t_write_set(u, X, ¢).num).memry, ¢),
cell_mem(write_em(t_write_set(u, Y, q),
unset_super(load_mmu(set_super(Y’), sched_cell((Y.control).frame, ¢))),
t_write_set(u, Y, ¢).num).memry, ¢))

Rewriting this formula with definitions of cell_mem, CS_eq, mshift, used _cells_eq and using
lemmas CS_eq_need:

CS_eq.need : LEMMA
xx < cell_mem(write_em(t_write_set(u, X, ¢),
unset_super (load_mmu(set_super( X ), sched_cell(( X .control).frame, ¢))),
t_write_set(u, X, ¢).num).memry, ¢).len
D xx < cell_map(c).high <-cell_map(c).low + 1
A xx + cell_map(c).low < mem_size

we have:

cicdD : LEMMA cnst_eq( X .control, Y.control)
A sched_cell(frame( X.control), ¢) = ¢
A used_cells_eq(X,Y,¢c) A n < clength(¢) A n + cell_map(c).low < mem_size
D write_em(t_write_set(u, X, q), unset_super(load_mmu(set_super(X),c)),
t_write_set(u, X, ¢).num).memry(n + cell_map(c).low)
= write_em(t_write_set(u, Y, ¢), unset_super(load_mmu(set_super(Y), c)),
t_write_set(w, Y, ¢).num).memry(n + cell_map(c).low)

Rewriting with cnst_eq and using axiom t_write_set_ax_1 and lemma cic4F:
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cicdF : LEMMA

XX = unset_super(load_-mmu(set_super(X ), c))
D cell_map(c).high = ((XX.control).mmu).high
A cell_map(c).low = ((XX.control).mmu).low

we have

cicdE : LEMMA
cnst_eq( X .control, Y.control)
A sched_cell(frame( X.control), ¢) = ¢
A used_cells_eq( X, Y, ¢)
A tws = t_writeset(u, X, q)
A n < clength(c)
A cell_map(c).high = ((XX.control).mmu).high
A cell_map(c).low = ((XX.control).mmu).low
A cell_map(c).high = ((YY.control).mmu).high
A cell_map(c).low = ((YY.control).mmu).low A n + cell_map(c).low < mem_size
D write_em(tws, XX, tws.num).memry(n + cell_map(c).low)
= write_em(tws, YY, tws.num).memry(n + cell_map(c).low)

This lemma is proved using axiom t_write_set_ax_1 again, the definition of cnst_eq and lemma
cic. W1 twice, i.e., cic /W1 and cic W1{XX «— YY, X «— Y}. Lemma cic. W1 is proved using
the definition of match_exists_n, axiom t_write_set_ax_2 and a key property about write_em,
write_em_prop mentioned above.

Q.E.D.

4 Minimal Voting

The DA_minv layer of the RCP architecture is positioned immediately below the DA layer
in the overall RCP specification hierarchy. DA_minv specifications maintain the same basic
structure as the DA layer. What is new at this level is a formalization of the minimal voting
scheme that offers a method of axiomatizing a set of general voting patterns, spanning the full
spectrum of possible degrees of voting frequency. Although highly frequent voting patterns,
such as the continuous voting and cyclic voting patterns discussed in our Phase 2 report [2],
could be expressed as instances of minimal voting, we anticipate that the greatest value from
this work will result when it is used to achieve minimal voting literally, with a corresponding
reduction in voting overhead.

It is worth noting that the DA_minv formalism could have been incorporated into the
RS layer of RCP. Originally, the voting scheme was intended to be quite arbitrary and
needed only to satisfy certain constraints. Later we decided to incorporate the minimal
voting concept as a voting scheme instance, still quite general, that could serve as the basis
for further refinement. Its appearance at this point in the hierarchy is the result of a choice
that could have been made differently. Note also that an informal proof the minimal voting
results were presented in our Phase 1 report [1].
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Mappings from the DA layer to the DA_minv layer have been constructed to map the
module generic_.FT onto the module minimal_v. This section presents the minimal voting
formalization and proofs of the mapping’s obligations.

4.1 Application Task Requirements

To formalize the conditions under which the minimal voting scheme achieves transient recov-
ery, it is necessary to introduce some preliminary definitions about task graphs and execution
schedules. At the base of this formalization is a set of uninterpreted functions and a set of
axioms that constrain these functions. Any application to be hosted on an RCP implemen-
tation must interpret these functions in such a way as to satisfy the axioms. If the axioms
hold, then the transient recovery properties shown about RCP will hold as well.

The uninterpreted functions pertaining to application tasks are the following:

cell_frame
cell_subframe
sched cell
num_subframes

cell_input

SAEEN AN

v_sched
Two axioms constrain these functions:

1. sched_cell_ax

2. full_recovery_condition

These functions and axioms are described below. There are several additional axioms
introduced in the formalization whose purpose is to constrain the implementation of task
execution in RCP. These additional constraints are shown to hold in the LE layer of RCP.

4.1.1 Scheduling Concepts

Four functions are used to describe the position of task cells within an execution schedule.
The frame and subframe for a particular cell are given by cell frame and cell_subframe, while
sched _cell provides the inverse mapping, and num_subframes gives the number of subframes
contained within a designated frame, because this number may vary from frame to frame.

cell frame : FUNCTION]cell — frame_cntr]
cell subframe : FUNCTION]cell — sub_frame]
sched_cell : FUNCTION][frame_cntr, sub_frame — cell]

num_subframes : FUNCTION]|frame_cntr — nat]
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A task schedule can use arbitrary definitions for these functions provided they satisfy a
well-formedness condition:

sched_cell_ax : AXIOM
mm = cell_frame(c) A k = cell_subframe(c)
& sched_cell(mm, k) = ¢ A k < num_subframes(mm)

This axiom expresses the functional inverse relationship and imposes the bound on the
number of valid subframes for a frame.

Next, we need to characterize the data flow dependencies of tasks embedded within a
schedule. The uninterpreted function cell_input(c, d) holds when the output produced by the
task executing at cell ¢ is used as an input by the task executing at cell d.

cell_input : FUNCTION]cell, cell — bool]

A cell may have inputs from zero or more other cells within the schedule. A cell may have
an input from itself, in which case the value referenced is from the task’s prior execution,
i.e., the task’s output from schedule_length frames ago. Clearly, cell_.input can be used to
define a data flow graph G that captures input-output relationships of the application tasks.
Figure 6 on page 13 shows an example of such a graph.

Recall that the RCP architecture divides a frame into four sequential phases: compute,
broadcast, vote, and sync. A consequence of this scheme is that all of the tasks scheduled
for execution during a frame will execute (and produce their output) before the output of
any task scheduled for voting is used in a vote operation. A further consequence is that if
cell ¢ provides its output to cell d, and ¢ is scheduled to execute before d within the same
frame, and ¢ is voted in this frame, then the value d uses as input is not a recently voted
value because ¢’s output is not voted until the vote phase of its frame. This feature of RCP
was designed to minimize the need for synchronization and make the implementation of
voting more practical. A drawback, however, is the introduction of a few complications in
the formalization of the recovery process.

Thus, we find it necessary to derive a new function based on the cell_input concept. While
cell_input captures the data flow relation irrespective of frame boundaries within a schedule,
we need an additional predicate induced by cell_input that indicates when a more specialized
set of conditions holds. The predicate cell_input_frame(c, d) holds when the value provided
by ¢ is generated in a different frame from d’s execution frame, and either ¢’s value flows
directly to d or flows indirectly to d through computation by cells that precede d in its frame.
This allows us to express the cell recovery conditions in terms of indirect data flows that
cross frame boundaries and hence will have been acted upon by vote operations in previous
frames. In effect, cell_input_frame defines a modified task graph in which the data flows are
prescribed by this new predicate rather than by cell_input.

To formalize this notion, we first define the predicate different_frame(c, d), which is true
when ¢’s last value was produced in a frame prior to the one in which d would be executing.
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Figure 13: Task graph induced by cell_input_frame (G*).

different_frame : FUNCTION]cell, cell — bool] =
(Ae,d:
cell_frame(c) # cell_frame(d) Vv cell_subframe(c) > cell_subframe(d))

Note that this concept of “different frame” is not the same as having different scheduled
frames. RCP uses the convention that if ¢ and d are scheduled to execute in the same frame,
with ¢ having a later subframe than d, a data flow from ¢ to d uses the value from from
¢’s prior execution, i.e., ¢’s output from schedule_length frames ago in time. It is this latter
notion of difference that is captured by different_frame.

To express cell_input_frame we enlist the help of a recursive function that computes the
transitive closure of the cell_input relation from the target cell back through the cells of all
earlier subframes, retaining only those cells that satisfy different_frame. It is this transitive
closure that captures the indirect data flows.

cell_input_star : RECURSIVE
FUNCTION]cell, cell, sub_frame — bool] =
(Ae,d,q:
(different_frame(c,d) A cell_input(c,d))
VvV (Je:
cell_input(e, d)
A cell_frame(e) = cell_frame(d)
A cell_subframe(e) < ¢
A cell_input_star(c, e, cell_subframe(e))))
BY (Ae,d,q:q)

Evaluating cell_input_star with a suitable starting value for the recursion is our means of
defining cell_input_frame, the data flow relation used to characterize the full recovery condi-
tion.

cell_input_frame : FUNCTION]cell, cell — bool] =
(A ¢,d : cell_input_star(c, d, cell_subframe(d)))
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In the following presentation, we refer to the task graph induced by the cell_input_frame
relation as G*. As an example, refer back to figure 6, where the data flows in this figure
would be given by an instance of cell_input. The corresponding graph defined by the derived
predicate cell_input_frame is shown in figure 13. Notice how the only edges in the graph are
ones that cross frame boundaries.

The final uninterpreted function needed to characterize an application concerns the
scheduling of voting.

v_sched : FUNCTION][frame_cntr, cell — bool]

The predicate v_sched(fr,c) is true when cell ¢ is scheduled to have its value voted at the
end of frame fr. This allows a (different) subset of the cell values to be voted each frame. It
is necessary to meet certain conditions in the assignments of a voting schedule to ensure that
full recovery of the cell states can be achieved in a bounded number of frames. A precise
statement of these recovery conditions requires the introduction of several new definitions,
which we choose to express in graph-theoretic terms.

4.1.2 Task Graph Concepts

Cell recovery is expressed as a property of the task data flow graph G* augmented with
schedules for computation and voting. Paths through the graph are the basic unit of expres-
sion. A path is simply a sequence of cells, which we represent in EHDM as a mapping from
natural numbers to cells.

path_type : TYPE = FUNCTION|nat — cell]

Although this can be used to represent infinite paths, we will be concerned only with finite
paths. A path of length L can be represented by the restriction of a path_type mapping to
its first L elements, that is, mapping from the values 0 to L. — 1. Hence, when we need to
restrict consideration to finite paths, we use a path value and a separate length value to
denote this restriction.

For this formal treatment, only paths over G* are of interest. Moreover, we only will have
occasion to refer to paths that terminate in a particular cell e. An arbitrary path from G*
ending in cell ¢ is identified by the following predicate.

input_path : FUNCTION|path_type, nat, cell — bool] =
(A path, len,c:
(len >0 D ¢ = path(len &1))
AN(Vg:0<gn g<len D cell_input_frame(path(¢ <1), path(q))))

The definition also admits zero-length paths, but any path of nonzero length must end in ¢.

Several definitions about paths are needed to construct proofs pertaining to cell recovery,
although they are not needed in the statement of the full recovery condition itself. One such
definition concerns a more specialized kind of path needed to reason about when the terminal
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cell ¢ can be assured of having a recovered value under certain conditions. The predicate
cell_rec_path(path,len, ¢, fr, H) holds iff a path of length len ending at cell ¢ contains a
progression of cells that must have been recovered in order for ¢ to be recovered in frame
fr, assuming the processor has been healthy for H consecutive frames (last transient fault
disappeared more than H frames earlier). This function is defined recursively by working
backward through G*, taking into account all cells that contribute directly and indirectly to
computing the task output at cell c.

cell_rec_path : RECURSIVE
FUNCTION |path_type, nat, cell, frame_cntr, nat — bool] =
(A path, len,c, fr, H :
IF H =0 THEN len =0 ELSE
IF v_sched(prev_fr(fr),c)
THEN len =0
ELSE
IF cell_frame(c) = prev_fr(fr)
THEN
len >0
A path(len &1)=r¢
A
(3 d:
cell_input_frame(d, ¢)
A cell_rec_path(path, len <1,d, prev_fr(fr), H <1))
V ((V e: = cellLinput_frame(e, c)) A len = 1))
ELSE cell_rec_path(path, len, ¢, prev_fr(fr), H 1) END
END
END)
BY (A path, len,c, fr,H : H)

For a given cell ¢, many paths are possible that satisty cell_rec_path. None, however, may
contain successive cells d and e where d’s output is voted before it is used by e. Only
paths that represent chains of data flow through G* unbroken by vote sites are admitted by
cell_rec_path. Whenever a cell takes multiple inputs, branching exists to create the possibility
of multiple recovery paths. The cell at the beginning of a recovery path must either have no
inputs or take all its inputs from cells with voted outputs. In all cases, there must be enough
time to follow the indicated path, i.e., H must be large enough to allow all the nonfaulty
frames needed for recovery.

To illustrate the concept of recovery paths, we refer to figure 13 again. Suppose the
output of T, is voted at the end of frame 1. Then two recovery paths for 1% are possible:
< T5,T7 > and < T4,T6,T7 >.

Since multiple recovery paths may emanate backward from a target cell, it is natural to
consider sets of recovery paths. In our case, it will suffice to define the set of path lengths
corresponding to all recovery paths for a cell c. We use path_len_set(c, fr, H) to define the
set of lengths for all paths needed to recover cell ¢ in frame fr after H healthy frames have
transpired.
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path_len_set : FUNCTION]cell, frame_cntr, nat — finite_set[nat]] =
(A ¢, fr, H — finite_set[nat] :
(A len : (3 path : cell_rec_path(path, len, ¢, fr, H))))

Finally, we note the definition for a cyclic path, which is simply a path in which a cell
appears more than once.

cyclic_path : FUNCTION]|path_type, nat — bool] =
(A path, len : duplicates(path, len))

4.1.3 Full Recovery Condition

With the preceding concepts about task graphs in hand, we may now introduce the full
recovery condition and its supporting definitions. First we define a pair of simple operations
for doing modular arithmetic on frame counter values. Functions mod_plus and mod_minus
perform addition and subtraction modulo the constant schedule_length.

mod_plus : FUNCTION|[frame_cntr, frame_cntr — frame_cntr] =
(A mm, Il — frame_cntr:
IF mm + 1l > schedule_length
THEN mm + Il <-schedule_length
ELSE mm + Il END)

mod_minus : FUNCTION|[frame_cntr, frame_cntr — frame_cntr] =
(A mm, Il — frame_cntr:
IF mm > Il THEN mm <l ELSE schedule_length <1l + mm END)

The function mod_minus is used, in turn, to define the notion of when one frame is
“between” two others. If we envision the frame counter values 0 to schedule_length—1 forming
a circular progression of values, with 0 following schedule_ length—1 in “wrap-around” fashion,
then the values between two points a and b carve out an arc of the circle. Any point within
that arc will be between a and 6. The points in the complementary arc lie between b and a.
If the distance along the arc from @ to a point p is less than the distance from a to b, then
p lies between a and b.

between_frames : FUNCTION|[frame_cntr, frame_cntr, frame_cntr — bool] =
(A a, fr, b : mod_minus(fr, a) < mod_minus(b, a))

The predicate between_frames is actually a half-open test; fr may equal a but not b.

Now it is possible to express when the output of a task at a given cell is voted in a way
that is useful to the receiving task. Specifically, if the output of cell d is scheduled to be
voted after it is computed and before it is consumed by cell ¢, then we know ¢ will be using
a recovered value for d.
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output_voted : FUNCTION]cell, cell, frame_cntr — bool] =
(Ad, ¢, fr:
v_sched(fr, d)
A
(between_frames(cell frame(d), fr, cell_frame(c))
Vv cell_frame(d) = cell _frame(c)))

This predicate allows for the special case where d and ¢ are scheduled for execution in the
same frame. Since we are only concerned with paths through G*, where there are no edges
from one cell to a later one within the same frame, we conclude that it suffices to vote
d during any frame. This follows because the value for ¢ must come from schedule_length
frames in the past.

The main criterion needed to ensure full recovery of all cell states is that for each cyclic
path in the graph G*, there must exist at least one valid vote site, that is, a pair of adjacent
cells in the path satistying the output_voted predicate. The predicate cycles_voted expresses
this requirement for all paths and all pairs of path indices k and [ delimiting a cyclic subpath.
For each such subpath there must exist an interior cell with its output properly voted.

cycles_voted : FUNCTION path_type, nat — bool] =
(A path, len :
(V k,L:
k<IN l<len A path(k) = path({)
D (Jgq, fr:
k< gA g <A output_voted(path(q), path(q+ 1), fr))))

Note that this definition implies that where there are no cyclic paths in G*, there is no need
for any voting whatsoever.

Our final statement of the full recovery condition is the following axiom.

full _recovery_condition : AXIOM
input_path(path, len,¢) D cycles_voted(path, len)

For all cells ¢ and every path of G* ending at cell ¢, the cycles on that path must be “voted,”
that is, contain at least one vote site.

As an illustration of this condition, consider again the example graph G* depicted in
figure 13. There is only one cycle in this graph, consisting of the cells for tasks Ty, Ty, T,
and T;. Voting any one of those cells in the frame in which it is scheduled for computation
will suffice to meet the full recovery condition. Since each one has its output consumed in
the immediately following frame, it is not possible to vote the cells in any other frames and
still satisfy output_voted. Notice how it would be useless to vote the output of either T} or
T3 since they lie on no cycles in G*, even though they are part of the cycle from the original
graph G in figure 6.
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4.1.4 Time to Recovery

To carry out the proofs for the minimal voting scheme it is necessary to characterize the
maximum time needed to recover a cell, where time is measured in number of frames. Our
basic mechanism for doing this is a recursive function that traverses paths through the graph
G* in reverse order, much the same as was done with the function cell_rec_path. Since this
function must be well-defined even if the full recovery condition fails to hold, we need a
starting value to supply for the recursive argument H that exceeds the maximum number of
frames that could possibly be required if full recovery is assured. This allows the recursion
to terminate even when the full_recovery_condition is not met.

The constant max_rec_frames serves this purpose. Its value was chosen to exceed the
maximum possible number of frames needed to recover a cell.

max_rec_frames : nat = schedule_length * (num_cells + 1)+ 1

The rationale for the value chosen is that num_cells is the maximum length of an acyclic
path through the graph G* and schedule_length is the maximum number of frames that can
transpire for any edge of the graph. Therefore, their product is the maximum time, in frames,
of an acyclic path. Add to that another schedule_length frames to account for the maximum
latency between when a cell is scheduled for execution and an arbitrary frame. The result
is a conservative upper bound on the time to recover a cell when the full_recovery_condition
holds.

The recursive function used to count frames to recovery is called NF_cell_rec. Its formal-
ization is somewhat unusual due to a need to take the maximum over a set of values collected
from recursive calls of the function. An intermediate function called rec_set is provided to
aid this process. Note that rec_set is a higher-order function; it takes a functional argument
of the following type.

cell_nat_fn : TYPE = FUNCTION]cell — nat]

With f a function of this type, recset(f,¢) returns a set of nats constructed as follows.
The value @ is a member of the set iff there exists another cell d providing input to ¢ and

a= f(d).

rec_set : FUNCTION]cell_nat_fn, cell — finite_set[nat]] =
(A enfn, ¢ — finite_set[nat] :
(Aa:
(3 d : cell_input_frame(d,¢) A a = cnfn(d)) A a < max_rec_frames))

The additional conjunct @ < max_rec_frames is used to ensure the resulting set is finite.
Thus, rec_set yields a method of applying f to all cells that send inputs to ¢ and collecting
the results of these applications into a set. In practice, the actual argument for f will be a
A-expression based on recursive calls to NF _cell _rec.

Now NF _cell_rec(c, fr, H) can be defined using the intermediate function rec_set. If ¢ was
voted in the previous frame, the recovery time is one frame. Otherwise, determine whether
¢ was due to execute in the previous frame. If so, return one plus the maximum recovery
time computed for recursive calls over all input-producing cells d. If ¢ did not execute last
frame, simply evaluate the function recursively for the same cell ¢ and add one frame.
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NF_cell_rec : RECURSIVE FUNCTION]cell, frame_cntr, nat — nat| =
(Ae, fr,H :
IF H =0 THEN 0 ELSE
IF v_sched(prev_fr(fr),c)
THEN 1
ELSE
IF cell_frame(c) = prev_fr(fr)
THEN
max(rec_set((A d : NF _cell_rec(d, prevfr(fr), H <1)),¢))+ 1
ELSE NF _cell_rec(c, prevAfr(fr), H 1)+ 1 END
END
END)
BY (Ae, fr,H: H)

This definition assumes that fr is the current frame and we wish to be able to use a recovered
value for ¢ at the beginning of that frame, hence the use of tests on the previous frame.

Given this function, what remains is to collect all values together and take their maxi-
mum. Accordingly, the constant all_rec_set is defined to be the set of all nats that correspond
to a recovery time for some cell and some frame. Taking the maximum over this set yields
the greatest time required to recover any cell from any point in the schedule.

all_rec_set : finite_set[nat] =
(Aa:(3 e, fr:a = NF_cell_rec(e, fr, max_rec_frames)))

recovery_period : nat = 2 + max(all_rec_set)

The recovery period is defined to be two frames larger than all_rec_set to account for the one
frame needed to vote the control state (frame counter) before any recovery actions can be
relied upon and the off-by-one effect caused by counting the current frame.

4.2 DA _minv Definitions

The RS layer of RCP was shown to achieve transient fault recovery by assuming a generic
set of functions describing recovery concepts and a set of axioms governing task behavior.
These functions and axioms are found in the EHDM module generic_FT. In the DA_minv layer,
these functions have been elaborated, although only partially in some cases, and proofs are
provided for the axioms. The functions in question are fs, f,, recv, and dep.

To model the selection of a subset of cell states for broadcast and voting, the uninterpreted
function fs; was introduced. Although its full interpretation appears at the LE layer of
RCP, it is further axiomatized in the DA_minv layer in terms that relate the various state
components in use at this level. In essence, f, relates the values returned by cebuf, which
extracts elements from a mailbox, to the current values of corresponding cell states. There
is also a control state component accessed via cnbuf. While f; remains uninterpreted in
DA _minv, the following axioms are provided to further its elaboration.
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fs : FUNCTION|[Pstate — MB]

fs_ax : AXIOM
IF v_sched(frame(ps.control), cc)
THEN cebuf(f_s(ps), cc) = cells(ps.memry, cc)
ELSE cebuf(f_s(ps), cc) = csO(cc) END

f_s_control_ax : AXIOM cnbuf(f_s(ps)) = ps.control

Only cells scheduled to be voted in the current frame have their cell states mapped into
the mailbox value produced by f,. Unvoted cells are assigned a default cell state value if
accessed using cebuf.

Turning to the voting effects function, f, is likewise uninterpreted in DA_minv and further
constrained by an axiom. To specify precisely the voted cell states, we provide a support
function that recursively applies a function to each mailbox slot and cell state, and accumu-
lates the result. The function cell_apply applies its functional argument for each voted cell,
in order, to the cumulative memory state it computes.

cell_apply : RECURSIVE
FUNCTION]cell_fn, control_state, memory, nat — memory|] =
(Acefn, K,Ck:
IF £ =0 Vv k> num_cells THEN C ELSE
IF v_sched(frame(K ),k <1)
THEN
write_cell(cell_apply(cfn, K, C, k< 1), k<1, cn(k < 1))
ELSE cell_apply(cfn, K, C,k<1) END
END)
BY (Acfn, K,C,k: k)

Only when a vote is scheduled for a given cell is the cell function applied and the memory
overwritten. Otherwise, the existing value for that cell state is retained.

An axiom for f, specifies the proper resulting value for a vote operation. The control
state portion is voted in every frame. The cell states are selectively voted and overwritten
according to the process specified in the cell_apply function.

fv: FUNCTION]|Pstate, MBvec — Pstate]

fv_ax: AXIOM
f_v(ps, w).control = k_maj(w)
A fv(ps, w).memry
= cell_apply((A ¢ : t_maj(w, ¢)), ps.control, ps.memry, num_cells)

If no cells are scheduled for voting in a certain frame, all the cell states will be unchanged
by f,. However, the control state value will always be voted (and potentially changed).

For every application-specific transient fault recovery scheme to be used with RCP, we
must be able to determine when individual state components have been recovered. This

41



condition is expressed in terms of the current control state and the number of nonfaulty
frames since the last transient fault. The uninterpreted function recv was introduced in
module generic_FT for this purpose. A recursive definition is now provided.

The predicate recv(c, K, H) is true iff cell ¢’s state should have been recovered when in
control state K with healthy frame count H. We use a healthy count of one to indicate that
the current frame is nonfaulty, but the previous frame was faulty. This means that H — 1
healthy frames have occurred prior to the current one.

recv : RECURSIVE FUNCTION]cell, control_state, nat — bool] =
(Ae, K, H -
IF 0 < 2 THEN false ELSE
v_sched(frame(pred( X)), ¢)

V IF cell_frame(c) = frame(pred( kX))
THEN (V d : cell_input_frame(d,¢) D recv(d, pred(X), H <1))
ELSE recv(c, pred(K), H 1) END

END)

BY (Ac, K, H: H)

Cell ¢ should be considered recovered if one of three conditions holds:

1. ¢ was voted in the previous frame.

2. ¢ was computed in the previous frame and all inputs to ¢ in G* were recovered in that
frame.

3. ¢ was not computed in the previous frame and was considered recovered in that frame.

As before, we test against the previous frame because we would like recv to describe the
situation at the beginning of the current frame.

The predicate dep(c, d, K') indicates that cell ¢’s value in the next state depends on cell
d’s value in the current state, when in control state K. This notion of dependency is different
from the notion of computational dependency; it determines which cells need to be recovered
in the current frame on the recovering processor for cell ¢’s value to be considered recovered
at the end of the current frame.

dep : FUNCTION]cell, cell, control_state — bool] =
(Ae,d, K :
= v_sched(frame( K), ¢)
A IF cell frame(c) = frame(K')
THEN cell_input_frame(d, ¢)
ELSE ¢ = d END)

If cell ¢ is voted during K, or its computation takes only sensor inputs, there is no dependency.
It ¢ is not computed during K, ¢ depends only on its own previous value. Otherwise, ¢
depends on one or more cells for its new value, namely, those cells connected by an edge in
G*.

Two utility functions are used in the subsequent presentation that we describe here.
First, cells_match states the simple condition that all cell components of the memories of two
Pstate values are equal. Second, dep_agree specifies a similar condition, that the subset of
cells that ¢ depends on all match for two Pstate values.
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cells_match : FUNCTION][Pstate, Pstate, cell — bool] =
(A X, Y, c: cells(X.memry, ¢) = cells(Y.memry, ¢))

dep_agree : FUNCTION]cell, control_state, Pstate, Pstate — bool] =
(Ae, K, X,)Y : (Vd:dep(c,d, k) D ft(X,d)="ft(Y,d)))

One final axiom we need to describe concerns a constraint on the cell_input function
and its relationship to the task execution function exec_task. The axiom cell_input_constraint
requires that for two Pstate values X and Y, and a cell ¢, the result of executing ¢ against
both X and Y produces the same cell state provided all cell states used as input by ¢ likewise
match in X and Y.

cell_input_constraint : AXIOM
X.control = Y.control
A sched_cell(frame( X.control), ¢) = ¢
A (V d :celliinput(d,c) D cells_match(X,Y,d))
D cells_match(exec_task(u, X, ¢q), exec_task(u,Y, q),c)

A similar property based on the derived function cell_input_frame and applicable to the graph
G* has been asserted as the lemma cell_input_frame_lem and proved using the axiom above.

4.3 DA_minv Proof Obligations

The proof obligations generated by mapping the DA layer onto the DA_minv layer stem from
the axioms of the generic_ZFT module. By proving these obligations we establish that the
minimal voting scheme embodied in the EHDM specifications discussed thus far achieves full
recovery from transient faults within recovery_period frames. We will present an overview of
some of these proofs in the following sections.

recovery_period_ax : OBLIGATION recovery_period > 2
succ_ax : OBLIGATION f{_k(fon(ps)) = succ(f_k(ps))
control_nc : OBLIGATION f_k(f_c(u, ps)) = fk(ps)

cells_nc : OBLIGATION f_t(f_n(ps), c) = f_t(ps, )

full_recovery : OBLIGATION H > recovery_period DO recv(c, K, H)
initial_recovery : OBLIGATION recv(c, K, H) O H > 2

dep_recovery : OBLIGATION
recv(c, succ(K), H + 1) A dep(c,d,K) D recv(d, K, H)

components_equal : OBLIGATION
fhk(X)=Ffk(Y) A Ve:ft(X,e)=1f2(Y,c)) D X =Y
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control_recovered : OBLIGATION
maj_condition(A) A (V p: member(p, A) D w(p) = fs(ps))
D fk(fwv(Y,w)) = fk(ps)

cell_recovered : OBLIGATION
maj_condition(A)
A (Y p:member(p, A) DO w(p)=fs(fc(u, ps)))
AN fk(X)= KA fk(ps) = K A dep_agree(c, I, X, ps)
D fa(fv(fe(u, X), w),c)=ft(fc(u, ps),c)

vote_maj: OBLIGATION
maj_condition(A) A (V p: member(p, A) D w(p) = fs(ps))
D fv(ps,w) = ps

4.4 'Top-Level EADM Proof for DA_minv

We show below the EHDM proof statements for the obligations presented in the previous
section. Most of the proofs are simple, requiring only the invocation of function definitions
and a few minor lemmas. Two of the proofs require more substantial effort. The proof of
cell_recovered is of moderate complexity and requires several lemmas for support. This proof
will be outlined in the next section. The proof of full_recovery, encapsulated here via the
lemma full_rec, is very complex and requires the formulation and proof of a large collection
of supporting lemmas. This proof will be outlined in the next section as well.

p_recovery_period_ax : PROVE recovery_period_ax FROM recovery_period_min
p_succ_ax : PROVE succ_ax FROM f.n
p_control_.nc : PROVE control.nc FROM f_c
p_cells_nc : PROVE cells_.nc FROM f.n
p_components_equal : PROVE components_equal {¢ — c@Qpl}
FROM
memory_equal {C' — X.memry, D — Y.memry},
Pstate_extensionality {Pstaterl — X, Pstater2 — Y}
p_full_recovery : PROVE full_recovery FROM full_rec

p_initial_recovery : PROVE initial_recovery FROM recv

p_dep_recovery : PROVE dep_recovery
FROM recv {K — succ(K), H — H@Qc+ 1}, dep, pred_succ_ax

p_control_recovered : PROVE control_recovered {p — p@pl}
FROM

k_maj_ax { K — ps.control}, fv_ax {ps — Y, w — w}, f_s_control_ax
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p_cell_recovered : PROVE cell_recovered {p — p@pl}
FROM
t_maj_ax {cs «— cebuf(fs(f_c(u, ps)),c)},
cell_input_frame_lem {Y — ps},
cells_match {Y — ps,c+— d@p2},
cells_match {X — fc(u,X),Y — fc(u, ps)},
f_v_components {ps — f_c(u, X)},
dep_agree {Y «— ps,d — d@p2},
dep_agree {Y — ps,d — c},
dep {d — d@p2},
dep {d — ¢},
fsax {ps — fc(u, ps), cc — ¢},
f_c_uncomputed _cells {X — ps},
f_c_uncomputed_cells,
fc{ps — X},
fec

p_vote_maj : PROVE vote_maj {p — pQp4}
FROM
components_equal {X — fv(ps,w),Y — ps},
k_maj_ax { K — ps.control},
t_maj_ax {cs «— cells(ps.memry, c@pl),¢c — c@Qpl},
w_condition,
w_condition {p — p@p2},
w_condition {p — p@p3},
fsax {cc «— c@pl},
f_s_control _ax,
f_v_components {¢ — c@pl}

4.5 Proof Summaries

We now focus our attention on summaries of two lines of proof. One is a proof of the
obligation cell_recovered and the other a proof of the obligation full_recovery.

4.5.1 Proof of cell_recovered

The cell_recovered obligation states conditions under which task computation and voting will
produce correct values for cell states at the end of the current frame, given that appropriate
cells had correct values at the beginning of the frame. In this case, being recovered means
that cell states agree with a majority consensus of the processors.

cell_recovered : OBLIGATION
maj_condition(A)
A (Y p:member(p, A) DO w(p)=fs(fc(u, ps)))
AN fk(X)= KA fk(ps) = K A dep_agree(c, I, X, ps)
D fa(fv(fe(u, X), w),c)=ft(fc(u, ps),c)
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Proving this obligation is a matter of accounting for the effects of the task computation
function f. and the voting function f,. Applying the definitions of various functions in the
formula and invoking the following lemma about f, produces two cases to consider based on
whether ¢ is scheduled for voting in the current frame.

f_v_components : LEMMA
fk(fv(ps,w)) = k_maj(w)
A ft(fv(ps, w),c)
= IF v_sched(frame(ps.control), ¢)
THEN t_maj(w, c) ELSE cells(ps.memry, ¢) END

A second case split is involved based on whether ¢is scheduled for execution in the current
frame. If cell_frame(c) = frame(X.control), we apply the following lemma

cell_input_framelem : LEMMA
X.control = Y.control
A cell_frame(c) = frame( X.control)
A (V d : cell_input_frame(d,c¢) D cells_match(X,Y, d))
D cells_match(f_c(u, X), fc(u,Y),c)

to deduce when cells should match after computation. If cell frame(c) # frame(X.control),
we apply a different lemma,

f_c_uncomputed_cells : LEMM A
cell_frame(c) # frame(X.control)
D cells((fc(u, X )).memry, ¢) = cells(X.memry, ¢)

to deduce that ¢’s cell state has not changed.

The proof, including the case splitting mentioned above, is carried out with a single EHDM
proof directive. Proving the lemmas themselves is straightforward. Only cell_input_frame_lem
requires moderate effort. This lemma is proved by complete induction on subframe number,
working from ¢’s subframe back toward the beginning of the frame. Several supporting
lemmas are used in the proof of cell_input_frame_lem.

4.5.2 Proof of full_recovery

The property called full_recovery formalizes the essence of RCP’s transient fault recovery
mechanism. Its proof is the heart of the minimal voting proof.

full_recovery : OBLIGATION H > recovery_period DO recv(c, K, H)

This formula states that if given enough time after experiencing a transient fault, eventually
a processor should recover all elements of its cell state by voting state information it has
exchanged with other processors. This formulais based on properties of the schedule and task
graph only; it does not deal with actual state value changes. Other portions of the generic_ZFT
obligations, such as cell_recovered, are responsible for those effects. “Enough time” in this
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case is expressed by the constant recovery_period, which is the maximum number of frames
required to recover an arbitrary cell from an arbitrary starting point within the schedule.
Recovery of a cell is formalized through the function recv, which was discussed in section 4.2.

We begin by giving a very brief proof sketch for the full_recovery property. First note
that it suffices to show recv(e, K, recovery_period), from which recv(e, K, H) will follow for
larger values of H. The constant recovery period is defined in terms of the maximum
value of NF_cell_rec(c, fr, max_recframes) for any ¢ and fr. NF_cell_rec effectively traces
paths backwards through G* until a vote site or a node with no inputs is reached. The
full _recovery_condition ensures that every cycle of G* is cut by a vote site, thereby forcing
each path traced by NF _cell_rec to be acyclic. The maximum number of frames taken by the
longest possible acyclic path in G* can be determined and is used to bound the path length
and hence the value returned by NF _cell_rec. This, in turn, ensures that recovery_period is a
bound on the worst case recovery time.

Now we turn to a more detailed presentation of the full_recovery proof. A lemma full_rec
was provided that has the same formula as full_recovery, so our goal is to prove full_rec.

full_rec : LEMMA H > recovery_period D recv(c, K, H)
This lemma is readily proved by induction on H by appealing to the lemma:
full_rec_rp : LEMMA recv(c, K, recovery_period)

Thus, once full recovery has been achieved it remains in effect as long as the processor
remains nonfaulty.

The proof of full_rec_rp is obtained by invoking the lemma
NF _cell_rec_recv : LEMMA
NF_cell_rec(c, frame(K'), k) < HA H <k A k< maxrecframes
D recv(c, K, H +2)

with substitutions H = max(all_rec_set) and & = max_rec_frames. Noting that recovery_period =
max(all_rec_set) 4 2, we are left to establish:

NF _cell_rec(c, frame(/'), max_rec_frames) < max(all_rec_set) A (1)
max(all_rec_set) < max_rec_frames

The first conjunct of formula 1 follows by the definition of all_rec_set given in section 4.1.4.
The second conjunct can be obtained by first noting that for some ¢ and K’,

NF _cell_rec(¢’, frame( K’), max_rec_frames) = max(all_rec_set) (2)
and then invoking the lemma

NF_cell_rec_bound_2 : LEMMA
NF _cell_rec(c, fr, max_rec_frames) < max_rec_frames
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NTF _cell_rec_bound_2

T

NF _cell_rec_bound_1 max_path_len_bound
(induction) \ /
bound_NF _cell _rec cell_rec_path_exists path_len_bound
(induction) (induction)

[minor lemmas]

cell_rec_path _acyclic long_path_cyclic
full_recovery _condition path_outputs_not_voted
(axiom) (induction) pigeonhole_duplicates
] separate proof
cell_rec_input_path ( )
(induction) [minor lemmas]

Figure 14: Proof tree for NF_cell_rec_bound_2.

with substitutions ¢ = ¢ and fr = frame(K”).

At this point, the proof of full_rec has been broken into two main branches based on
the lemmas NF _cell_rec_recv and NF _cell_rec_bound_2. In the first branch, NF _cell_rec_recv is
proved by induction on H with the aid of several minor lemmas and the following property
of NF _cell_rec:

bound_NF _cell_rec : LEMMA NF _cell_rec(c, fr,H) < H

This lemma asserts that the count returned by NF _cell_rec may not exceed H because that is
the point at which the recursion will “bottom out.” If the count equals H, then recovery has
not been achieved in the number of frames allotted. Conversely, when the count is less than
H, we know that all the recovery paths have terminated before running out of nonfaulty
frames. Induction on H is the technique used to prove bound_NF _cell_rec.

The other main branch of the full_rec proof focuses on establishing the strict inequality
NF _cell_rec_bound_2. This process requires many steps. Figure 14 shows the overall proof tree
and the principal lemmas needed to carry out the proof. Several minor lemmas used along
the way are not shown in the diagram. In addition, some lemmas require proof by induction,
which we usually factor into several smaller steps by formulating a few intermediate lemmas
that follow a stylized approach to induction proofs.
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Since the condition NF_cell_rec(e, fr, H) < H implies that cell ¢ will be recovered within
H frames, the lemma NF _cell_rec_bound_2 states that all cells will be recovered within time
max_rec_frames. This is shown by appealing to the lemma NF _cell_rec_bound_1,

NF_cell_rec_bound_1 : LEMMA
H < max_rec_frames

D NF_cell_rec(c, fr, H)
< max(path_len_set(c, fr, H)) * schedule_length + schedule_length

and the lemma max_path_len_bound,
max_path_len_bound : LEMMA max(path_len_set(c, fr, H)) < num_cells

with the substitution H = max_rec_frames. Recalling the value of constant max_rec_frames
as schedule_length * (num_cells + 1) + 1, it follows from the two bounds that

NF _cell_rec(c, fr, max_rec_frames) < max_rec_frames (3)

and this completes the proof of NF_cell_rec_bound_2.

The proot of NF_cell_rec_bound_1 is a straightforward application of induction with the
help of several low-level lemmas. Since the proof involves a fair amount of arithmetic rea-
soning, a few lemmas were formulated to deal with the presence of the multiplication op-
erator. This helped overcome the limitations of the EHDM decision procedures. On the
right-hand side of figure 14, the lemma max_path_len_bound follows directly from the defini-
tion of path_len_set and another bounding lemma:

path_len_bound : LEMMA
cell_rec_path(path, len,c, fr, H) D len < num_cells

Now we have reduced the overall proof to establishing that a recovery path is no longer
than the number of cells in a schedule. This can be deduced easily from the acyclic property
of recovery paths,

cell_rec_path_acyclic : LEMMA
cell_rec_path(path, len, ¢, fr, H) D = cyclic_path(path, len)

and the contrapositive of the following sufficient condition for the presence of a cyclic path:
long_path_cyclic : LEMMA len > num_cells D cyclic_path(path, len)

Thus, we once again have a two-way branch in our main proof. The acyclic property of
recovery paths, cell_rec_path_acyclic, is proved by first applying a lemma about path types,

cell_rec_input_path : LEMMA
cell_rec_path(path, len,c, fr, H) D input_path(path, len,c)
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to deduce:

cell_rec_path(path, len, ¢, fr, H) A input_path(path, len,¢) (4)
D = cyclic_path(path, len)

Now invoking the full_recovery_condition from section 4.1.3 leaves us with:

cell_rec_path(path, len,c, fr, H) A cycles_voted(path, len) (5)
D = cyclic_path(path, len)

Another forward chaining step using the following absence of voting property for recovery
paths,

path_outputs_not_voted : LEMM A
cell_rec_path(path, len,c, fr, H)
D (Vgq, ff:
0<gA g<len D = output_voted(path(q <1), path(q), ff))

results in the formula:

cell_rec_path(path, len,c, fr, H) A cycles_voted(path, len) A (6)
(V ¢, ff:
0<gA g<len D = output_voted(path(q <1), path(q), ff))
D = cyclic_path(path, len)

Formula 6 now follows from the definitions involved because if none of the outputs along the
path is voted, and all cyclic paths must have voted outputs, then the path cannot be cyclic.
This completes the proof of cell_rec_path_acyclic.

Finally, the remaining branch of the main proof is concerned with showing that the
sufficient condition for cyclic paths, long_path_cyclic, is true. Intuitively, it seems that if a
path is longer than the number of distinct cells, duplicates must exist. Nevertheless, the
formal proof of such a statement involves a moderate amount of effort to carry out. In our
case, the bulk of the work has been encapsulated in the form of a general theory for the
Pigeonhole Principle, described in more detail in the next section. This principle states that
if we have n objects drawn from a set having k distinct elements, where n > k, then there
must exist duplicates among the n objects. Proving long_path_cyclic is now a simple matter
of applying this principle,

pigeonhole_duplicates : LEMMA
len > g A bounded_elements(nlist, len,q) O duplicates(nlist, len)

with substitutions nlist = path, len = len, and ¢ = num_cells. Employing the definition
of bounded_elements (presented in section 4.6) and the definition of cyclic_path (presented in
section 4.1.2) completes the proof of long_path_cyclic.

We have described the overall proof of the full_recovery obligation in moderate detail.
Complete details are found in the EHDM modules for the DA_minv layer.
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4.6 Pigeonhole Principle

The proof of full_recovery relies on a formal statement of the pigeonhole principle. We present
below an excerpt from the EHDM module nat_pigeonholes that captures the essential parts
of this formalization. This module expresses its properties in terms of a finite list of natural
numbers. Arguments to the functions take the form of a nat_list, which is a mapping from
nats to nats, and a length.

A function duplicates expresses the condition of a nat_list having at least one duplicate
element. The predicate bounded_elements allows one to state that all elements of the list are
less than some bounding number.

duplicates : FUNCTION][nat_list, nat — bool] =
(Anlist, len: (Fk,l: k<IN I <len A nlist(k) = nlist(])))

bounded_elements : FUNCTION]/nat_list, nat, nat — bool] =
(A nlist, len, Imax: (V ¢: ¢ <len D nlist(¢) < Imax))

The number of occurrences of a particular number in a list is counted by the function
occurrences. The predicate bounded_occurrences states the condition that the occurrence
count for each possible value in a list is no greater than a specified bound.

occurrences : RECURSIVE FUNCTIONI nat_list, nat, nat — nat] =
(A nlist, len,a :
IF len =0
THEN 0
ELSIF a = nlist(len 1) THEN occurrences(nlist, len <1,a)+ 1
ELSE occurrences(nlist, len <1,a) END)
BY (A nlist, len,a : len)

bounded_occurrences : FUNCTION|nat_list, nat, nat — bool] =
(A nlist, len,b : (V a : occurrences(nlist, len,a) < b))

Three lemmas involving these functions are shown below. The first version of the pigeon-
hole principle is expressed in terms of simple duplicates, i.e., the occurrence bound is one.
This is the version used in the proof of the full_recovery obligation. A generalized version of
the principle is provided as well.

pigeonhole_duplicates : LEMMA
len > g A bounded_elements(nlist, len,q) O duplicates(nlist, len)

pigeonhole_general : LEMMA
len > k* g A bounded_elements(nlist, len,¢)
D - bounded_occurrences(nlist, len, k)

dup_bnd_occ : LEMMA
duplicates(nlist, len) < = bounded_occurrences(nlist, len, 1)
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4.7 Primary Lemmas

The primary lemmas used to prove the DA_minv obligations are collected and displayed
below. There are a number of other lemmas used in the proofs not shown here, but these are
lower-level lemmas or formulas introduced merely to break up induction proofs into several
manageable cases. All those lemmas cited in the foregoing presentation are included in this
section. All lemmas shown have been proved within EHDM.

cell_apply_element : LEMMA
cells(cell_apply(cfn, K, C', num_cells), ¢)
= IF v_sched(frame( K), ¢)
THEN cfn(¢) ELSE cells(C',¢) END

f_v_components : LEMMA
fk(fv(ps,w)) = k_maj(w)
A ft(fv(ps, w),c)
= IF v_sched(frame(ps.control), ¢)
THEN t_maj(w, c) ELSE cells(ps.memry, ¢) END

f_c_uncomputed_cells : LEMM A
cell_frame(c) # frame(X.control)
D cells((fc(u, X )).memry, ¢) = cells(X.memry, ¢)

exec_element_2 : LEMMA LET K := ps.control, k := cell_subframe(c¢)
IN
¢ < num_subframes(frame( K'))
D cells(exec(u, ps,q).memry,c)
=1IF k < gA cellframe(c) = frame( X')
THEN cells(exec_task(u, exec(u, ps,k),k).memry, )
ELSE cells(ps.memry,c¢) END

cell_input_framelem : LEMMA
X.control = Y.control

A cell_frame(c) = frame( X.control)
A (V d : cell_input_frame(d,c¢) D cells_match(X,Y, d))
D cells_match(f_c(u, X), fc(u,Y),c)

NF_cell_rec_equiv: LEMMA
= v_sched(prev_fr(fr),c) A cell_frame(c) = prev_fr(fr)
D NF_cell_rec(c, fr,k+ 1)
= 1 + max(NF _rec_set(NF _cell_rec, ¢, prev_fr(fr), k))

full_rec : LEMMA H > recovery_period D recv(c, K, H)

full_rec_rp : LEMMA recv(c, K, recovery_period)
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bound_NF _cell_rec : LEMMA NF _cell_rec(c, fr,H) < H
bound_cell_rec_path : LEMMA cell_rec_path(path, len,c, fr, H) D len < H

NF _cell_rec_nonzero : LEMMA k >0 O NF_cell_rec(c, fr, k) >0

NF_rec_set_nonempty : LEMMA
cell_input_frame(d,c) A k < max_rec_frames

D - empty(NF_rec_set(NF _cell_rec, ¢, fr, k))

NF_cell_rec_recv : LEMMA
NF_cell_rec(c, frame(K'), k) < HA H <k A k< maxrecframes
D recv(c, K, H +2)

long_path_cyclic : LEMMA len > num_cells D cyclic_path(path, len)

cell_rec_input_path : LEMMA
cell_rec_path(path, len,c, fr, H) D input_path(path, len,c)

cell_rec_path_acyclic : LEMMA
cell_rec_path(path, len, ¢, fr, H) D = cyclic_path(path, len)

NF_cell_rec_bound_1 : LEMMA
H < max_rec_frames

D NF_cell_rec(c, fr, H)
< max(path_len_set(c, fr, H)) * schedule_length + schedule_length

NF_cell_rec_bound_2 : LEMMA
NF _cell_rec(c, fr, max_rec_frames) < max_rec_frames

path_len_bound : LEMMA
cell_rec_path(path, len,c, fr, H) D len < num_cells

cell_rec_path_exists : LEMIMA
(3 path, len : cell_rec_path(path, len, ¢, fr, H))

max_path_len_bound : LEMMA max(path_len_set(c, fr, H)) < num_cells

path_outputs_not_voted : LEMM A
cell_rec_path(path, len,c, fr, H)
D (Vgq, ff:
0<gA g<len D = output_voted(path(q <1), path(q), ff))

path_cells_not_voted : LEMMA
len >0 A cell_rec_path(path, len,c, fr, H)
D (Vff:
(between_frames(cell_frame(c), ff, fr) vV fr = cell_frame(c))

D - v_sched(ff, ¢))
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last_cell_not_voted : LEMMA

len > 1 A cell_rec_path(path, len,c, fr, H)
D (V ff : = output_voted(path(len <2), path(len 1), ff))

last_cell_condition : LEMMA

len >0 A cell_rec_path(path, len,c, fr, H)
D ¢ = path(len 1) A ((3 d: cell_input_frame(d,c)) V len =1)

next_cell_condition : LEMMA

cell_rec_path(path, len,c, fr, H)
D (V e:cell_rec_path(path WITH [(len):= €], len, ¢, fr, H))

input_path_zero : LEMMA input_path(path, 0, ¢)
input_path_one : LEMMA ¢ = path(0) D input_path(path,1,¢)
input_path_ext : LEMMA

input_path(path, len,d) A cell_input_frame(d,c) A ¢ = path(len)
D input_path(path, len +1,¢)

5 Interprocessor Mailbox System

The functionality of the interprocessor mailbox system was first elaborated in the DS level.
The basic idea is illustrated in figure 15. In a four processor system, for example, there
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Figure 15: Structure of Mailboxes in a four-processor system
are three incoming slots and one outgoing slot each of type MB. The collection is of type

MBvec.
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MB: TYPE
MBvec : TYPE = ARRAY|processors — MB]

Each of these slots contain some subset of the cells of memory (i.e. since only a small portion
of memory is exchanged and voted during each frame). Two uninterpreted functions, cebuf,
cnbuf are defined at the DA_minv level to return the “control state” and the contents of the
mailbox slot (i.e. MB) associated with a specific cell:

cebuf : FUNCTION|[MB, cell — cell_state]
cnbuf : FUNCTION[MB — control state]

These functions are not implemented at the DA_minv level but are constrained by the
following three axioms:

cebuf_ax : AXIOM cs_length(cebuf(mb, cc)) = c_length(cc)
fs_.ax : AXIOM
IF v_sched(frame(ps.control), cc)

THEN cebuf( fs(ps), cc) = cells(ps.memry, cc)
ELSE cebuf( fs(ps), cc) = ¢s0(cc) END

f_s_control_ax : AXIOM cnbuf( fs(ps)) = ps.control

The function f; is used by the state-transition relation to transfer data from main memory
to the outgoing mailbox slot. This function f; is defined as

f, : FUNCTION][Pstate — MB]

and is uninterpreted at the DA_minv level. It is refined in the LE level in terms of four
functions as shown in figure 16. The implementation of fs is described in the next subsection.

cell_ of MB v 54 %Bmap

Figure 16: Function f; Implementation Tree
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5.1 LE Mailbox

The two upper-level functions, cebuf, cnbuf that return the “control state” and the contents
of the mailbox slot (i.e. MB of type MBbuf) associated with a specific cell are mapped onto
functions cebuf and cnbuf in the LE Model. These functions, and the type MBbuf are defined

as follows:

MBbuf : TYPE = RECORD cntrl : control_state, mem : MBmemory END

cebuf : FUNCTION[MBbuf, cell — cellstate] =
(A MB,cc: LET fr := (MB.cntrl).frame IN
IF v_sched(fr,cc) THEN MBcell(MB.mem,cc,fr) ELSE ¢sO(cc) END)

cnbuf : FUNCTION[MBbuf — control_state] = (A MB : MB.cntrl)

The function cebuf simply copies the contents of a particular cell in a mailbox slot to a
cell_state buffer. This is specified using a higher-order shift function MBshift:

MBshift : FUNCTION[MBmemory, MBaddress — memory| =
(A MBmem, Low :
(Ann:IF nn 4 Low < MBmem_size
THEN MBmem(nn + Low)
ELSE word0 END IF))

MBcell : FUNCTION[MBmemory, cell, frame_cntr — cell _state] =
(A MBmem, cc, fr:
csO(cc) WITH

[len := length(MBmap(cc, fr)),
blk := MBshift(MBmem, MBmap(cc, fr).low)])

The location of cells in the mailbox is determined by the function MB_map:
MBmap : FUNCTION]cell, frame_cntr — MBaddress_range]

The function f; is used by the state-transition relation to transfer data from main memory
to the outgoing mailbox slot. This function f; is defined as follows:

fs : FUNCTION|[Pstate — MBbuf] =
(A PS : MBbuf_0 WITH [cntrl := PS.control,
mem := f_s_mem(PS)])

where
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f_s_-mem : FUNCTION|[Pstate — MBmemory| =
(APS:LET fr := (PS.control).frame IN
(A adr : IF (cell_of_MB(adr,fr) < no_cell) THEN
IF v_sched(fr, cell_of MB(adr,fr)) THEN
PS.memry(cell_map(cell_of_MB(adr,fr)).low + adr <MBmap(cell_of_MB(adr, fr), fr).low)

ELSE word0

END IF

ELSE word0

END IF))

The function cell_of_MB returns the cell in which a given address is contained. This function
is defined axiomatically using address_within:

cell of_MB_ax : AXIOM
IF v_sched(fr,cc) A address_within(adr, MBmap(cc,fr))
THEN cell_of_MB(adr,fr) = cc
ELSE
cell_of_MB(adr, fr) = no_cell END

cell of MB_ax_2 : AXIOM
cell_of_ MB(adr,fr) = cc A cc < no_cell
D v.sched(fr,cc) A address_within(adr, MBmap(cc, fr))

The following lemma is easier to use and understand than the definition of the function

fs:

fs_lem: LEMMA
offset < length(cell_map(cc)) <1 A v_sched((PS.control).frame, cc)
D fs(PS).mem(MBmap(cc, (PS.control).frame).low + offset)
= PS.memry(cell_map(cc).low + offset)

This lemma shows the results of copying a cell from main memory to the mailbox with
fs, and is illustrated in figure 17.

5.2 Verifications Associated With f,-Related Refinements

The key properties of f; were specified axiomatically in the DA_minv level specification by
two axioms. These become proof obligations in the LE level:

fs_.ax : OBLIGATION
IF v_sched(Frame(ps.control), cc)
THEN cebuf(f_s(ps), cc) = cell_mem(ps.memry, cc)
ELSE cebuf(f_s(ps), cc) = cs0(cc)
END

f_s_control_ax : OBLIGATION cnbuf(f_s(ps)) = ps.control
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Figure 17: The result of copying a cell from main memory to the mailbox using f;

5.2.1 Proof of f_s_control_ax

This result follows trivially from the definition of f;.

5.2.2 Proof of fs_ax

The first step is to establish:

LEM1: LEMMA
v_sched(frame(ps.control), cc) A z < length(cell_map(cc)) <1
D cebuf(fs(ps), cc).blk(z)
= f_s(ps).mem(MBmap(cc, (ps.control).frame).low + z)

This follows from the definition of cebuf, MBcell, MBshift and four axioms: MB_size_az,
map_ax, MBmap_high_ax and f_s_control_ax. The next step is to prove LEM2:
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LEM2 : LEMMA
2 < length(cell_map(cc)) <1
D cell_mem(ps.memry, cc).blk(z) = ps.memry(z 4 cell_map(cc).low)

from the definitions of cell_.mem and mshift and axioms MB _size_az and cell_map_high_ax.
Using a key lemma about f;, fslem and LEM1 and LEM2 with x substituted by xx, we
have:

LEM3: LEMMA
v_sched(frame(ps.control), cc) A xx < length(cell_map(cc)) &1
D cebuf(fs(ps), cc).blk(xx) = cell_mem(ps.memry, cc).blk(xx)

Two more simple lemmas are easily established from the definitions cebuf and MBcell and
axioms f_s_control_ax and map_ax:

LEM4 : LEMMA
= v_sched(frame(ps.control), cc) D cebuf(fs(ps), cc) = cs0(cc)

LEM5 : LEMMA

v_sched(frame(ps.control), cc)
D cebuf(fs(ps), cc).len = length(cell_map(cc))

The last required lemma is LEM6:

LEM6 : LEMMA
IF v_sched(frame(ps.control), cc)
THEN cebuf(f_s(ps), cc).len = cell_mem(ps.memry, cc).len
ELSE cebuf(fs(ps), cc).len = cs0(cc).len

The obligation f_s_ax follows from LEM3, LEM4, LEM5 and LEM®6 using the cell_state exten-
sionality axiom CS_extensionality.

6 Implementation of f,, f; and Other Functions
At the DA_minv level the fi, f; and f, functions are fully interpreted:

fx : FUNCTION]|Pstate — control_state] = (A ps: ps.control)

fi : FUNCTION|Pstate, cell — cell_state] =
(A ps, ¢ : cells(ps.memry, ¢))

fn : FUNCTION]|[Pstate — Pstate] =
(A ps:ps WITH [(control) := succ(ps.control)])
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The function fj extracts the control state from Pstate. The function f; is implemented via
the cells function and the function f, increments the frame counter.

The succ function is defined axiomatically as follows:

succ : FUNCTION]control_state — control_state]
succ_cntr_ax : AXTOM frame(succ( K )) = next_fr(frame( K'))

The function f, is still uninterpreted at the LE level:
fo : FUNCTION|[Pstate — outputs]

In the upper levels of the hierarchy as well as in the LE model details of the 1/0 interface
have not been elaborated. The inputs and outputs of the system are uninterpreted domains:

inputs : TYPE
outputs : TYPE

7 A Simple Model to Demonstrate Consistency of the
Axioms

To demonstrate that the axioms introduced in the LE level are consistent, we created a
version of this level in which the important constants and functions left undefined in the
original LE model were given values. Figure 18 shows the memory configuration and the
task schedule chosen for the simple model.

Table 3 shows the values given to the previously unspecified constants in order to realize
the desired configuration and structure. Although the values assigned are not realistic (for
example, memsize = 2), they suffice for demonstrating consistency of the axioms.

‘ Module ‘ Constant ‘ Value ‘
rep_defs nrep 6
rcp_defs_i2 schedule_length 2

num _cells 2
memory _defs mem size 2
MBmemory_defs | MBmem_size 1

Table 3: Values Assigned to Constants
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Figure 18: Memory and Task Schedule Layout

7.1 Function Definitions

In addition to giving values to the above mentioned constants, we also gave definitions to
important functions. In module rcp_defs_hw.spec, the following definition for cell_map was

given:
cell_map : FUNCTION]cell — address_range] = (A cc:
IF (cc =0)
THEN (REC low :=0, high :=0) : address_range
ELSE (REC low := 1, high :=1): address_range
END IF)

In mailbox_hw, MBmap was defined as follows:
MBmap : FUNCTION]cell, frame_cntr — MBaddress_range] = (A cc, fr:
(REC low := 0, high :=0) : MBaddress_range)
The following definitions were given in cell funs:

cell frame : FUNCTION]cell — frame_cntr] = (A ¢:
IF (¢ =0) THEN 0 : framecntr ELSE 1 : frame_cntr END IF)
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cell_subframe : FUNCTION]cell — sub_frame] = (A ¢: 0 : sub_frame)

sched_cell : FUNCTION]frame_cntr, sub_frame — cell] = (A fr, sf:
IF (fr =0) THEN 0:cell ELSE 1: cell END IF)

num_subframes : FUNCTION |[frame_cntr — nat] = (A fr:1)

Cell_ of MB was defined as follows in minimal_hw.spec:

cell_of MB : FUNCTION[MBaddress, frame_cntr — nat] = (A adr, fr:
IF (adr =0) A (fr =0)
THEN 0
ELSIF (adr =0) A (fr =1)
THEN 1
ELSE no_cell
END IF)

Finally, the following definition for v_sched was given in module path_funs.spec :

v_sched : FUNCTION]frame_cntr, cell — bool] = (A fr,c:
IF (fr =0) A (¢=0)) V ((fr =1) A (c=1))
THEN true ELSE false
END IF)

7.2 Inconsistencies Discovered

This exercise revealed three inconsistencies in the LE axioms. As originally written, neither
sched cell_ax nor cell_of_MB_ax nor MBcell_separation was satisfiable.

The original sched_cell_ax was as follows:

sched_cell_ax : AXIOM
mm = cell_frame(c) A k = cell_subframe(c¢) & sched_cell(mm, k) = ¢

As written, this axiom does not take into account the fact that the returned value of
sched_cell(mm, k) is meaningful only when k is a valid subframe of mm. Thus the axiom
should be, and now is, written in the following way:

sched_cell_ax : AXIOM
mm = cell_frame(c) A k = cell_subframe(c¢) &
sched_cell(mm, k) = ¢ A k < num_subframes(mm)
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The original cell of MB_ax was as follows:

cell of_MB_ax : AXIOM
IF v_sched(fr, cc) A address_within(adr, MBmap(cc, fr))
THEN cell_of_MB(adr, fr) = cc
ELSE cell_of_MB(adr, fr) = no_cell
END

The “ELSE” part of this axiom is simply false; for any valid adr and fr, cell_of_MB(adr, fr)
will return a valid cell, not no_cell. All that we can say about the value that will be returned
is that it will not be equal to cc. Fortunately, this is all that we need to know, and the axiom
can be rewritten in the following way:

cell of_MB_ax : AXIOM
IF v_sched(fr, cc) A address_within(adr, MBmap(cc, fr))
THEN cell_of_MB(adr, fr) = cc
ELSE cell_of_MB(adr, fr) # cc
END

The original MBcell_separation was as follows:

MBcell separation : AXIOM
(c1 # ¢2) D address_disjoint(MBmap(cy, fr), MBmap(cz, fr))

This axiom does not take into account the fact that we care about the addresses being
disjoint only if both of the cells in question are scheduled in the current frame. Thus, the
axiom was changed to be:

MBcell separation : AXIOM
(c1 # ¢2) N v_sched(fr,cq) A vsched(fr,c) D
address_disjoint(MBmap(cy, fr), MBmap(cg, fr))

In addition to these 3 inconsistent axioms, an unneeded axiom was discovered, namely
num _subframes_ax, which was given as follows:

num_subframes_ax : AXIOM
fr = cellframe(c) D cell_subframe(¢) < num_subframes(fr)
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& Conclusion

In this paper we present the third phase of the development of the Reliable Computing
Platform (RCP). This effort has resulted in two additional layers in the formal specification
hierarchy, bringing the total to six (excluding the clock synchronization hierarchy it is built
upon). These specifications introduce a more detailed elaboration of the behavior of the
RCP in three main areas:

o task dispatching and execution,
e minimal voting, and

e interprocessor communication via mailboxes.

Each of these refinements was developed using the EHDM mapping facility, which automat-
ically generates the required proof obligations. Each of these proof obligations has been
satisfied. In addition, many of the axioms have been shown to be consistent by mapping
them onto a concrete (albeit unrealistic) instance. This paper presents an overview of the
more interesting and important proofs.

Phase 3 does not represent a complete implementation of the RCP. Much work remains to
carry this detailed design down into a fully operational implementation. However, the design
is sufficiently mature for the implementation of a meaningful simulator. The simulator is
currently under development in the Scheme programming language. One part of the system
remains as a high-level design rather than a detailed design: the interactive consistency
mechanism. There are many possible algorithms available that could be exploited, but so
far, no choice has been made for the RCP.

The RCP represents one of the largest and most complex proofs performed using EHDM.
The total collection of EHDM specifications and proof directives is 13559 lines long (excluding
blank lines and most comments). Executing the entire set of proofs requires over 4 hours of
computation time on a Sparc 10 with 64 Mbytes of memory.
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A Obligations Generated by EHDM Mappings

In earlier sections we have discussed the most important obligations and proofs. For com-
pleteness we list all of the obligations produced by Ehdm mapping statements:

A.1 Module generic FT_to_minimal_v

ps, X,Y : VAR Pstate

p,t,7: VAR processors

u : VAR inputs

w: VAR MBvec

A, B : VAR set[processors]

c,d,e: VAR cell

K : VAR control state

H : VAR nat

recovery_period_ax : OBLIGATION recovery_period > 2

succ_ax : OBLIGATION f{_k(f_n(ps)) = succ(f _k(ps))

control_nc : OBLIGATION f_k(f_c(u, ps)) = f_k(ps)

cells_nc : OBLIGATION f_t(f_n(ps),c) = f_t(ps,c)

full_recovery : OBLIGATION H > recovery_period D recv(c, K, H)
initial_recovery : OBLIGATION recv(c, K, H) O H > 2

dep_recovery : OBLIGATION
recv(c, succ(K), H + 1) A dep(c,d, K) D recv(d, K, H)

components_equal : OBLIGATION
fhk(X)=fk(Y) A (Ve:ft(X,e)=ft(Y,¢)) D X =Y

control_recovered : OBLIGATION
maj_condition(A) A (V p: member(p, A) O w(p)="Fs(ps)) O fk(fv(Y,w))="fk(ps)

cell_recovered : OBLIGATION
maj_condition( A)
A (Y p:member(p, A) DO w(p)=fs(fc(u, ps)))
AN fk(X)= K A fk(ps) = K A dep_agree(c, K, X, ps)
D fa(fv(fe(u, X),w),c)=ft(fc(u, ps),c)

vote_maj : OBLIGATION
maj_condition(A) A (V p: member(p, A) DO w(p)="~s(ps)) DO fv(ps,w)=ps
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A.2 Module DA _to DA_minv

s,t, da: VAR DAstate
u : VAR inputs
4, p,q, 99 : VAR processors
T : VAR number
X.,Y : VAR number
D : VAR number
broadcast_duration : OBLIGATION
(1 < Rho) * abs(duration(broadcast) <2 * v * duration(compute) < v * duration(broadcast)) <6
> max_comm _delay

broadcast_duration2 : OBLIGATION
duration(broadcast) <2 * v % duration(compute) < v * duration(broadcast) > 0

all_durations : OBLIGATION
(1 4+ v) * duration(compute) + (1 4 v) * duration(broadcast) < frame_time

pos_durations : OBLIGATION
0 < (1<) *duration(compute)
A 0 < (1<) *duration(broadcast)
A 0 < (1<v)«duration(vote) A 0 < (1 <wv)*duration(sync)

A.3 Module rcp_defs_imp_to_hw

k : VAR nat

mem : VAR memory
cc, xx: VAR cell

cs : VAR cell_state

cells_ax : OBLIGATION cs_length(cell_mem(mem, cc)) = c_length(cc)
write_cell_ax : OBLIGATION
cs_length(cs) = c_length(xx)
D CS_eq(cell_mem(write_cell(mem, xx, cs), cc),
IF cc = xx THEN cs ELSE cell_mem(mem, cc) END)
null_memory_ax : OBLIGATION CS_eq(cell_-mem(mem0, cc), csO(cc))

mb : VAR MBbuf
cebuf_ax : OBLIGATION cs_length(cebuf(mb, cc)) = c_length(cc)

cell_state_varl, cell state_var2, cell state_var3 : VAR cell_state
control_state_varl, control_state_var2, control_state_var3 : VAR control_state

cell_state_reflexive : OBLIGATION CS_eq(cell_state_varl, cell_state_varl)
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cell_state_symmetric : OBLIGATION
CS_eq(cell state_varl, cell_state_var2) O CS_eq(cell_state_var2, cell state_varl)

cell_state_transitive : OBLIGATION
CS_eq(cell_state_varl, cell_state_var2) A CS_eq(cell_state_var2, cell_state_var3)
D CS_eq(cell_state_varl, cell_state_var3)

control_state_reflexive : OBLIGATION cnst_eq(control state_varl, control_state_varl)

control_state_symmetric : OBLIGATION
cnst_eq(control_state_varl, control_state_var2) O cnst_eq(control_state_var2, control_state_varl)

control_state_transitive : OBLIGATION
cnst_eq(control_state_varl, control_state_var2)
A cnst_eq(control_state_var2, control_state_var3)
D cnst_eq(control_state_varl, control_state_var3)

frame_congruence : OBLIGATION
cnst_eq(control_state_varl, control_state_var2)
D frame(control_state_varl) = frame(control_state_var2)

cs_length_congruence : OBLIGATION
CS_eq(cs, cell_state_varl) D cs_length(cs) = cs_length(cell_state_varl)

write_cell_congruence : OBLIGATION

CS_eq(cs, cell_state_varl) O write_cell(mem, cc, cs) = write_cell(mem, cc, cell_state_varl)

A.4 Module gen_com_to_hw

p,t,7: VAR processors
k.l,q: VAR sub_frame

u : VAR inputs
A : VAR set[processors]
c,d,e: VAR cell

C,D: VAR memory

w : VAR MBvec

h : VAR MBmatrix

us, ps, X,Y : VAR Pstate
cs : VAR cell_state

fr : VAR frame_cntr

K, L: VAR control_state

memory_equal : OBLIGATION
(V ¢ : CS_eq(cell_mem(C, ¢), cellLmem(D,¢))) O C =D

exec_task_ax : OBLIGATION
sched_cell(frame(ps.control), ¢) # ¢
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D CS_eq(cell_mem(exec_task(u, ps,q).memry,c), cell_mem(ps.memry,c))

exec_task_ax 2 : OBLIGATION
cnst_eq(exec_task(u, ps,q).control, ps.control)

A.5 Module frame_funs_to_gc_hw

K : VAR control_state
succ_cntr_ax : OBLIGATION frame(succ_cs(K')) = next_fr(frame( X))

pred_cntr_ax : OBLIGATION frame(pred_cs( K )) = prev_fr(frame( X))
pred_succ_ax : OBLIGATION cnst_eq(pred_cs(succ_cs(K)), K)

succ_congruence : OBLIGATION
cnst_eq( /', control_state_varl)
D cnst_eq(succ_cs(K'), succ_cs(control_state_varl))

pred_congruence : OBLIGATION
cnst_eq( /', control_state_varl)
D cnst_eq(pred_cs(K ), pred_cs(control_state_varl))

A.6 Module minimal_v_to_minimal_hw

k.l : VAR nat

c,d: VAR cell

H : VAR nat

C,D: VAR memory

ps, X,Y : VAR Pstate
w: VAR MBvec

K, L: VAR control_state
cc: VAR cell

q, st : VAR sub_frame
cfn : VAR cell fn

cell_apply_MAP_EQ : OBLIGATION
(IF k=0 VvV k> num_ells THEN C
ELSE
IF v_sched(frame(K ),k <1)
THEN write_cell(cell_apply(cfn, K, C k1), k<1, cfn(k<1))
ELSE cell_apply(cfn, K, C,k<1) END
END
=IF k=0 V k> numcells THEN C
ELSE
IF v_sched(frame( K ),k <1)
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THEN write_cell(cell_apply(cfn, K, C k1), k <1, cfn(k <1))
ELSE cell_apply(cfn, K,C,k<1) END
END)

f_s.ax : OBLIGATION
IF v_sched(frame(ps.control), cc)
THEN CS_eq(cebuf(f_s(ps), cc), cell_mem(ps.memry, cc))
ELSE CS_eq(cebuf(f_s(ps), cc), ¢sO(cc)) END

f_s_control_ax : OBLIGATION cnst_eq(cnbuf(f_s(ps)), ps.control)

fv_ax: OBLIGATION
cnst_eq(f_v(ps, w).control, k_maj(w))
A fv(ps, w).memry
= cell_apply((A ¢ : t_maj(w, ¢)), ps.control, ps.memry, num_cells)

cell_input_constraint : OBLIGATION
cnst_eq( X .control, Y.control)
A sched_cell(frame( X.control), ¢) = ¢
A (V d :celllinput(d,c) D cells_match(X,Y,d))
D cells_match(exec_task(u, X, ¢q), exec_task(u,Y,q),c)

A.7 Module maj_funs_to_minimal_hw

A : VAR set[processors]

¢ : VAR cell

w : VAR MBvec

cs : VAR cell_state

K : VAR control_state

p: VAR processors

k_maj_ax : OBLIGATION

(3 A : maj_condition(A) A (V p:member(p, A) D cnst_eq(cnbuf(w(p)), K)))

D cnst_eq(k-maj(w), K)

t_maj_ax : OBLIGATION
(3 A:
maj_condition(A) A (V p: member(p, A) D CS_eq(cebuf(w(p),c), cs)))
D CS_eq(t-maj(w,c), cs)

t_majlen_ax : OBLIGATION cs_length(t-maj(w,¢)) = c_length(c)

A.8 Module DA _minv_to LE
s,t, da: VAR DAstate

u : VAR inputs
4, p,q, 99 : VAR processors
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T : VAR number
X.,Y : VAR number
D : VAR number
broadcast_duration : OBLIGATION
(1 < Rho) * abs(duration(broadcast) <2 * v * duration(compute) < v * duration(broadcast)) <6
> max_comm _delay

broadcast_duration2 : OBLIGATION
duration(broadcast) <2 * v * duration(compute) < v * duration(broadcast)
> 0

all_durations : OBLIGATION
(1 + v) * duration(compute) 4 (1 + v) * duration(broadcast) < frame_time

pos_durations : OBLIGATION
0 < (1<) duration(compute)
A 0 < (1<©v)*duration(broadcast)
A 0 < (1<v)*«duration(vote) A 0 < (1<) *duration(sync)

A.9 Module maxf_to_maxf_model

S : VAR finite_set[nat]
a,b: VAR nat
max_ax : OBLIGATION
(member(a, ) DO max(S5) > a)

A IF empty(5)

THEN max(5) =0

ELSE

(3 b: member(b,5) A b=max(S)) END

A.10 Module maj_hw_to_maj_hw_model

A : VAR set[processors]

¢ : VAR cell

w: VAR MBVEC

cs : VAR cell_state

K : VAR control_state

p: VAR processors

k_maj_ax : OBLIGATION

(3 A : maj_condition(A) A (V p:member(p, A) D cnst_eq(cnbuf(w(p)), K)))

D cnst_eq(k-maj(w), K)

t_maj_ax : OBLIGATION
(3 A:
maj_condition(A) A (V p: member(p, A) D CS_eq(cebuf(w(p),c), cs)))
D CS_eq(t-maj(w,c), cs)
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t_majlen_ax : OBLIGATION cs_length(t-maj(w,¢)) = c_length(c)

A.11 Module RS _majority to_.RS_maj_model

k : VAR nat
p: VAR processors
us : VAR Pstate
rs : VAR RSstate
A : VAR set[processors]
maj_exists : FUNCTION|[RSstate — boolean] =
(Ars:
(3 A, us:
maj_condition(A) A (V p: member(p, A) D (rs(p)).proc_state = us)))

maj_ax : OBLIGATION
(3 A : maj_condition(A) A (V p:member(p, A) D (rs(p)).proc_state = us))
D maj(rs) = us

A.12 Module algorithm_mapalgorithm
T,Ty,T1, X, 11: VAR number
1 : VAR period
p,q,7 : VAR proc
rr, 11, qq, nn: VAR nat

s : VAR proc_set
n:proc = nrep

Ap : OBLIGATION skew(p,q, T_sup(0),0) < delta0
A; : OBLIGATION
nonfaulty(p,7) A nonfaulty(q,?) A S1C(p,q,i) A Sa(p,i) A Sa(q,?)
D abs(Delta2(q,p,7)) < 9
A (El TO .
in_S_interval(7p, ¢)
A abs(rt(p,i,To + Delta2(q, p, 1)) <rt(q,i,1To)) < eps)

A2_aux : OBLIGATION Delta2(p,p,i) =0
Cy : OBLIGATION ngood(i) > 0
(5 : OBLIGATION 5 > X
(53 : OBLIGATION X > A

C4: OBLIGATION A > 6 +eps + half(p) x5
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(5 : OBLIGATION ¢ > delta0 +p* R

Cs : OBLIGATION
6> 2% (eps +p*5)+ 2 *nfaulty(i) * A/ngood(7)
+ n* p* R/ngood(7)
+pxA
+ n % p* X /ngood(7)

C6_opt : OBLIGATION
6> 2x(eps +px5)*(ngood(i) <1)/ngood(i)
+ 2+ nfaulty(?) * A /ngood(7)
+ n* p* R/ngood(7)
+ p* A * (ngood(z) <1)/ngood(¢)
+ n % p* X /ngood(7)
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B EHDM Status Reports: M-x amps, mpcs, amos

The following reports were generated by EHDM after completion of the specification and
proof activities. Included are the following reports:

1. Module Proof Chain Status (mpcs)
2. All Module Proof Status (amps)
3. All Module Obligation Status (amos)

Refer to the EHDM user documentation for detailed explanations of the report formats. Note
that to conserve space some portions of these reports have been deleted so that only the more
useful items of information are presented. The complete status reports can be obtained from
the FTP directory cited in section 1.5.

B.1 Module Proof Chain Status (mpcs)

Excerpts of this report have been reproduced below with the “terse proof chains” moved to
the end.

SUMMARY
The proof chain is complete
411 TCCs and module assumptions have been proved

The axioms and assumptions at the base are:
cardinality'!card_ax
cardinality!card_empty
cardinality'!card_subset
cell_funs!sched_cell_ax
frame_funs!pred_cntr_ax
frame_funs!pred_succ_ax
functionsl!extensionalityl
LE'all_durations
LE!broadcast_duration2
mailbox_hw!map_ax
mailbox_hw!MBcell_separation
mailbox_hw!MBmap_high_ax
mailbox_hw!MB_size_ax
maxf_model !ubound_ax
memory_generic'!addrs_ty_extensionality
naturalnumbers!nat_invariant
noetherian!general_induction
numbers !mult_pos
path_funs!full_recovery_condition
phase_defs!distinct_phases
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phase_defs!member_phases
rcp_defs_hw!cells_for_all_ax
rcp_defs_hw!cell_map_length_ax
rcp_defs_hw!cell_separation

rcp_defs_hw!control_state_extensionality

recursive_maj'card_add

to_minimal_hw_prf_ 2'!'t_write_set_ax_1
to_minimal_hw_prf_ 2'!'t_write_set_ax_2

Total: 28

The definitions and type-constraints are:

absolutes!abs

US!N_us
Total: 195

The formulae used are:
absolutes!abs

US!N_us
Total: 10569

The completed proofs are:
absolutes'!abs_div2_proof

to_minimal_hw_prf_2!p_CS_eq_need
Total: 781

Terse proof chains for module everything

RS_majority!maj_ax

is shown to be a consistent axiom by mapping

to_RS_maj_model

generic_FT!vote_maj
is shown to be a consistent axiom
to_minimal_v

maxf !max_ax
is shown to be a consistent axiom
to_maxf_model

rcp_defs_impl!cells_ax
is shown to be a consistent axiom
to_hw

maj_funs!t_maj_len_ax
is shown to be a consistent axiom
to_minimal_hw

maj_hw'k_maj_ax
is shown to be a consistent axiom

by

by

by

by

by

mapping

mapping

mapping

mapping

mapping
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to_maj_hw_model

maj_hw!t_maj_ax
is shown to be a consistent axiom
to_maj_hw_model

gen_com!memory_equal
is shown to be a consistent axiom
to_gc_hw

rcp_defs_imp!Pstate_extensionality
is shown to be a consistent axiom
to_hw

minimal_v!f_v_ax
is shown to be a consistent axiom
to_minimal_hw

minimal_v!'!'f_s_control_ax
is shown to be a consistent axiom
to_minimal_hw

minimal_v!cell_input_constraint
is shown to be a consistent axiom
to_minimal_hw

gen_com!exec_task_ax_2
is shown to be a consistent axiom
to_gc_hw

gen_com!exec_task_ax
is shown to be a consistent axiom
to_gc_hw

rcp_defs_impl!write_cell_ax
is shown to be a consistent axiom
to_hw

minimal_v!f_s_ax
is shown to be a consistent axiom
to_minimal_hw

generic_FT!components_equal
is shown to be a consistent axiom
to_minimal_v

generic_FT!full_recovery
is shown to be a consistent axiom
to_minimal_v

generic_FT!recovery_period_ax
is shown to be a consistent axiom
to_minimal_v

by

by

by

by

by

by

by

by

by

by

by

by

by

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping
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generic_FT!control_recovered
is shown to be a consistent
to_minimal_v

generic_FT!succ_ax
is shown to be a consistent
to_minimal_v

generic_FT!cell_recovered
is shown to be a consistent
to_minimal_v

generic_FT!dep_recovery
is shown to be a consistent
to_minimal_v

generic_FT!initial_recovery
is shown to be a consistent
to_minimal_v

generic_FT!control_nc
is shown to be a consistent
to_minimal_v

generic_FT!cells_nc
is shown to be a consistent
to_minimal_v

algorithm!CO
is shown to be a consistent
mapalgorithm

algorithm!C3
is shown to be a consistent
mapalgorithm

time!C1
is shown to be a consistent
maptime

algorithm!C2
is shown to be a consistent
mapalgorithm

DAl!pos_durations
is shown to be a consistent
to_DA_minv

DA_minv!broadcast_duration
is shown to be a consistent
to_LE

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

axiom

by

by

by

by

by

by

by

by

by

by

by

by

by

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping

mapping
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algorithm!A0Q
is shown to be
mapalgorithm

algorithm!C5
is shown to be
mapalgorithm

algorithm!A2
is shown to be
mapalgorithm

algorithm!C4
is shown to be
mapalgorithm

algorithm!A2_aux
is shown to be
mapalgorithm

algorithm!C6_opt
is shown to be
mapalgorithm

consistent

consistent

consistent

consistent

consistent

consistent

axiom

axiom

axiom

axiom

axiom

axiom

by

by

by

by

by

by

mapping

mapping

mapping

mapping

mapping

mapping

module

module

module

module

module

module

B.2 All Module Proof Status (amps)

This report is reproduced in its entirety.

Proof status for modules on using chain of module everything

Proof summary for module words

Totals: O proofs, O attempted, O succeeded, O

Proof summary for module defined_types
Totals: O proofs, O attempted, O succeeded, O

Proof summary for module nat_types

P_upto _TCCL. o e
poupfrom_TCCL. .. o
P_below _TCCL. ... e
pPoabove _TCCL. ... e e

Totals: 4 proofs, 4 attempted, 4 succeeded, 2

Proof summary for module interp_rcp

p_processors_TCC1

Totals: 1 proofs, 1 attempted, 1 succeeded, O

Proof summary for module numeric_types

poposnum_TCCL. ... .
p_nonnegnum_TCC1
p_fraction_TCC1

seconds.

seconds.

PROVED
PROVED
PROVED
PROVED

PROVED

PROVED
PROVED
PROVED

O = O =

O = O

seconds
seconds
seconds
seconds

seconds

seconds
seconds
seconds



Totals: 3 proofs, 3 attempted, 3 succeeded, 1 seconds.

Proof summary for module arithmetics
quotient_pos_proof....... ... ... e
mult_mon_proof...... ... ... e
div_mon_proof...... ... ... e e
div_mult_proof....... ...
mult_pos_alt_proof......... ... i
mult_mon2_proof....... ... ... e
div_mon2_proof....... ... ... e

Totals: 7 proofs, 7 attempted, 7 succeeded, 4 seconds.

Proof summary for module noetherian
mod_pProof. . .. . . e e
Totals: 1 proofs, 1 attempted, 1 succeeded, 2 seconds.

Proof summary for module natprops
diff_zero_proof....... ... ...
pred_diff _proof...... ... . ...
diffl _proof. ... ...
diff_diff proof....... ... .. .
diff_plus_proof...... ...
diff_ineq proof...... .. ... ..

Totals: 6 proofs, 6 attempted, 6 succeeded, 12 seconds.

Proof summary for module phase_defs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module sets
p_extensionality........ ... i e
Totals: 1 proofs, 1 attempted, 1 succeeded, 1 seconds.

Proof summary for module rcp_defs_i
processors_TCC1_PROOF........ ... i,
Totals: 1 proofs, 1 attempted, 1 succeeded, O seconds.

Proof summary for module memory_generic
p_address_ty_TCCLl. . ... . i i i
p_address_range_ty_TCCl......... ... . i,
p_addr_len ty _TCCLl. ... .. i i

Totals: 4 proofs, 4 attempted, 4 succeeded, 6 seconds.

Proof summary for module finite_sets
finite_set _TTCL. ... ittt i ittt e e
Totals: 1 proofs, 1 attempted, 1 succeeded, 2 seconds.

Proof summary for module rcp_defs_i2
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module nat_inductions
discharge. ... i e e
nat_induction....... ... e e e

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

PROVED

PROVED

PROVED
PROVED
PROVED
PROVED

PROVED

PROVED
PROVED

H R OKR,ORO

N = BN

g O = O

seconds
seconds
seconds
seconds
seconds
seconds
seconds

seconds

seconds
seconds
seconds
seconds
seconds
seconds

seconds

seconds

seconds
seconds
seconds
seconds

seconds

seconds
seconds



nat_complete. ... ... .. e
reachabiliby. ... ..ot e
Totals: 4 proofs, 4 attempted, 4 succeeded, 3 seconds.

Proof summary for module bounded_induction
P_upto_Induction........ ...t e
p_well founded....... ... .. . e
p_reachability....... .ot

Totals: 3 proofs, 3 attempted, 3 succeeded, 4 seconds.

Proof summary for module maprcp
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module absolutes
abs_times_proof...... ... .. . . e
abs_recip TCCL _Pr.... ..ot e
abs_recip proof. ... ... .. e
abs_div_proof. ... . ... e
abs_proof0. ... .
abs_proofl. .. . ... e
abs_proof2. .. . ... e
abs_proof2b. ... .. e
abs_proof2c. ... .. e
abs_proof3. .. ...
abs _proofd. .. ... e
abs_proofb. .. ...
abs_proof6. ... ... e e
abs _pProof7 . . . e
abs_proof8. ... ...
pos_abs_proof. ... .. e
abs_div2_proof.. ... ... e
rearrangel _proof....... ... ... e
rearrange2_proof. ... ... .. ... e e
rearrange_Proof. . ... .. i i e

PROVED
PROVED

PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

Totals: 22 proofs, 22 attempted, 22 succeeded, 27 seconds.

Proof summary for module natinduction
discharge. ... i e e
Ind_proof. ... e
Ind _m_proof. ... . e
mod_Mm_Proof .. ... . e e
mod_induction_proof......... ... . ... i i
inductionl_proof...... ... .. . e
mod_inductionl_proof........ ... ... ... i i
induction2_ proof...... ... .. e

Totals: 8 proofs, 8 attempted, 8 succeeded, 25 seconds.

Proof summary for module cardinality
empty _Prop_pProof. . . .. e e
subset_union_proof......... .. .. ... il
tWice _Proof. .. e

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
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seconds
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seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
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seconds
seconds
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seconds
seconds
seconds
seconds
seconds

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

seconds
seconds
seconds



card_proof. ... .. e e PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 4 seconds.

Proof summary for module rcp_defs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module maxf_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module MBmemory_defs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module memory_defs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module nat_pigeonholes

o3 o5+ K = PROVED
PRA_0CC_SUM. . . ottt ittt et e e e e e PROVED
o T o X o3 PROVED
o T o X o3 oS PROVED
L3 2 =T <X o2 PROVED
all_occ_all _base. .. ...t e e e PROVED
all_occ_all _ind base.......iinen ittt PROVED
all_occ_all_ind_dind_1....... ..ttt PROVED
all_occ_all_ind _ind_2....... ..ttt PROVED
all_occ_all _ind.......iiiiin it e e e PROVED
all _occ_all. ... e e e e e PROVED
one_0CC_eXists 1. . ittt e e e e PROVED
ONE_0CC_eXIsts 2. ittt ittt e e e e PROVED
dup_bnd_occ_1_ind........ ... .. i PROVED
dup_bnd_occ_ 1. ... . e e PROVED
dup_bnd_occ_2_ind........ ... PROVED
dup_bnd_occ_2. ... .. e PROVED
dup_bnd_occ. ... ... i e e PROVED
pigeonhole_general........... .., PROVED
pigeonhole_duplicates.......... ..o, PROVED

Totals: 20 proofs, 20 attempted, 20 succeeded, 285 seconds.

Proof summary for module maxf
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module cell_funs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module rcp_defs_imp
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module rcp_defs_i_maprcp
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module interptime
Totals: O proofs, O attempted, O succeeded, O seconds.
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Proof summary for module sigmaprops

sc_basis_proof... ... .. .. e PROVED 1 seconds
Sc_step _proof. ... . e e PROVED 0 seconds
< oy o af o 1 PROVED 2 seconds
Sm_basis_pProof. ... ... e PROVED 1 seconds
Sm_Step _Proof. ... . e e PROVED 3 seconds
<) 1 o o o PROVED 4 seconds
mod_sigma_mult_proof........... ... . ittt PROVED 1 seconds
ss_basis_proof... ... ... . e PROVED 1 seconds
Ss_8tep _proof. ... .. e PROVED 3 seconds
<< o af o 1 PROVED 6 seconds
slb_proof. .. . e PROVED 1 seconds
Sls _proof. . . . e e PROVED 1 seconds
sigmal _pProof. ... ... e e PROVED 6 seconds
STb_proof. .. . e PROVED 1 seconds
ST _PTOoO . . e e PROVED 1 seconds
Sigma_rev_Proof. ... ... e e PROVED 6 seconds
split_basis_proof........ ... . i PROVED 3 seconds
split_step_proof...... ... i e PROVED 7 seconds
split_proof. ... . e PROVED 13 seconds
sa_basis_proof... ... ... . e PROVED 2 seconds
sa_step _proof. ... . e e PROVED 3 seconds
<= Ty o ol o PROVED 3 seconds
bounded_proof. ... ... . . e PROVED 2 seconds
sb_basis_proof....... ... e PROVED 2 seconds
alt_sigma_bound_one_step_proof.......... ... ... ... ..., PROVED 1 seconds
sigma_split_proof....... ... PROVED 1 seconds
alt_sb_step_proof...... ... ... i PROVED 1 seconds
sb_step_proof. ... ... e PROVED 0 seconds
= o Ty o af o PROVED 28 seconds
sigma_bound_proof......... .. .. i PROVED 2 seconds

Totals: 30 proofs, 30 attempted, 30 succeeded, 106 seconds.

Proof summary for module time
PosR_proof. .. .. e PROVED 0 seconds
POSS _ProOoL . . e e e PROVED 0 seconds
SinR_proof. ... .. e PROVED 1 seconds
T next_proof..... ... i e PROVED 0 seconds
Ti proof. . . PROVED 1 seconds
InRS _proof. ... e PROVED 1 seconds
Ti_in_ S _proof..... . . i e PROVED 1 seconds
In_ S Proof. ... e PROVED 2 seconds

Totals: 8 proofs, 8 attempted, 8 succeeded, 6 seconds.

Proof summary for module proc_sets
P_nat DIt .. PROVED 0 seconds
p_card_fullset....... ... .. i e PROVED 1 seconds
discharge_finite......... ... i, PROVED 1 seconds

Totals: 3 proofs, 3 attempted, 3 succeeded, 2 seconds.

Proof summary for module to_maxf_model
Totals: O proofs, O attempted, O succeeded, O seconds.
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Proof summary for module rcp_defs_hw
P_csO _TCCL . . e e
p_write_cell TCCL. ... ... . i i
p_cell map_high ax......... ... i
p_cell map_length_lem......... ..ot
Pocell map_loW_lem. ... ..ttt
Totals: b proofs, 5 attempted, 5 succeeded, 5 seconds.

Proof summary for module cell_inductions
reachabiliby. ... ..ot e
cell nat_induction..........iiiiiiiin e
c3_well_founded........ ... e e
cell_nat_induction_2........ .0ttt ininnennnnnn
n3_well_founded......... ... i e
path_cell_nat_induction............... ...
nb_well_founded........ ... ... e e

Totals: 7 proofs, 7 attempted, 7 succeeded, 36 seconds.

Proof summary for module path_funs
rec_set_TCCl. . ... . e e
NF_rec_set _TCCl. .. .. . it e it i e
path_len_set_TCCLl.. ... . i i i
all_rec_set _TCCl. ... .. i e e e
Totals: 4 proofs, 4 attempted, 4 succeeded, 17 seconds.

Proof summary for module maj_funs
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_imp
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module interpclocks
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module maptime
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module proc_induction
p_processors_induction............ ... . i
p_well founded....... ... .. . e
p_reachability....... .ot
proc_plus_TCC1_PROOF........ ..o i,

Totals: 4 proofs, 4 attempted, 4 succeeded, 5 seconds.

Proof summary for module sums
counter_converseO_proof....... ... ... . ... i i,
counter_converse_i_proof......... .. ... .. i,
counter_converse_proof......... ... ... i,
partsumsO_proof. .. ... .. .. . e
partsums_1i_proof....... ...
partsum_proof. .. ... .. .. e
part_lem_proof.. ... ... . e e
part_partsums_proof........ .. ... e

PROVED
PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
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part_count_proof..... ... ... e PROVED

sum_countO_proof. ... ... ... e PROVED
sum_count_ind_proof........ ... ... ... i i i PROVED
sum_count_proof. ... ... e e PROVED
counter_boundO_proof....... ... ... i i i PROVED
intermediate_proof....... ... .. .. il e PROVED
counter_bound_i_proof........ ... ... .. i i PROVED
counter_bound_proof........ ... .. ... i i PROVED
mean_lemma_proof....... ... ... e PROVED
split_sum_proof...... ... .. i PROVED
split_mean_proof....... ... ... . i PROVED
sum_bound_mod_proof.... ... ... ... i e PROVED
sum_boundO_proof ... ... .. .. e e PROVED
sum_bound_proof. ... ... e e PROVED
mean_bound_proof... ... ... ... e PROVED
mean_const_proof..... ... ... e PROVED
sum_mult_proof. ... ... . e e PROVED
mean_mult_proof....... ... ... e PROVED
mean_suUm_Proof..... ... .. e PROVED
mean_diff _proof....... ... ... PROVED
abs_sum_proof. ... ... .. e PROVED
abs_mean_proof...... ... ... PROVED
rearrange_sub_proof........ ... .. i i i i PROVED
rearrange_sum_proof......... ... .. i i i PROVED
p_sigma_restrict_O....... ... PROVED
P_Sigma_restrict_S......c.uuiiiiii i, PROVED
P_sSigma_restrict..... ..ot PROVED
Posig restrict.. ... e e e e PROVED
p_sum_restrict....... ... ... PROVED
p_sum_restrict_eq....... ... PROVED
p_mean_restrict_eq....... ...t PROVED

Totals: 39 proofs, 39 attempted, 39 succeeded, 242 seconds.

Proof summary for module clocks

Tho pos_proof. ... ... i PROVED
rho_small _proof...... ... .. i e PROVED
diminish_proof....... ... .. i PROVED
MONOPTOOL . L i e e PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 5 seconds.

Proof summary for module generic_FT
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module maxf_to_maxf_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module mmu_def
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module recursive_maj

card_singleton. ... .o e e PROVED
nrep_fullset. . ... ... i e PROVED
UNION_PLUS_OME. . ottt ittt i ittt ettt eas PROVED
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intersection_plus_ONe. .. ... ...ttt PROVED

cfen_base. ... ... . e e PROVED
cfen_ind. ... ... . e e PROVED
card_fullset_eqg nrep. ... ..o, PROVED
maj_cond_UNique. .. ...ttt PROVED
111 B o2 B B PROVED
ITML _Ind. o e e i e e PROVED
rec_Maj_Llemma. ... ..ottt e PROVED
maj_card_lemma. . ......uuiniiiiiiiiinin i PROVED
rec Maj_COond. ...t e PROVED
rec_maj_cond_2. ... ... e PROVED
rec_maj_cond_3. ... ... e PROVED
- - < X e PROVED
ZP_And. .. e PROVED
Zpred_preserved. . ... ... ... i e PROVED

Totals: 18 proofs, 18 attempted, 18 succeeded, 94 seconds.

Proof summary for module mailbox_hw

P_MBcell TCCL. i i e e PROVED
P_MBmap_loW_lem. .. ...ttt e e PROVED
P_MBmap_ _Lem. ... e e e PROVED
P_MBmap_lem_2. ... . e e PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 6 seconds.

Proof summary for module frame_funs

PosSUCC_le PlUS. . ottt i e e PROVED
P_MOA_MINUS_ZETO . ottt tie ittt iiieie e it PROVED
P_mOod_MINUS_PIUS. .ottt ittt ittt e PROVED

Totals: 3 proofs, 3 attempted, 3 succeeded, 22 seconds.

Proof summary for
Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for

module rcp_defs_to_imp
0 attempted, O succeeded,

module interpalgorithm
0 attempted, O succeeded,

module time_maptime
0 attempted, O succeeded,

module mapclocks
0 attempted, O succeeded,

module algorithm

0 seconds.

0 seconds.

0 seconds.

0 seconds.

o = o PROVED
< = o - PROVED
o~ o PROVED
<~ o 3 PROVED
good_bad_proof....... ... i e PROVED
S1C_self proof. ... .o e PROVED
CB_TCCL_PROOF. ...ttt e i PROVED
POS _BeIIMS . . .ttt e e e PROVED
COa _ProoL . .o e e PROVED
Bl proof. . . e e PROVED
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C2and3 _proof. ... .o e e
NPOS _ProoL . . o e e e
Clock _proof . .. e e
D2bar_prop_proof ... ... .. e
S1C_lemma_proof. ... .. e e
Theorem_2_proof...... ... . . i

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

Totals: 16 proofs, 16 attempted, 16 succeeded, 206 seconds.

Proof summary for module DS

Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for
Totals: 0 proofs,

Proof summary for
below_empty_eq
below_empty_ni
below_empty_n2
rmax_bound. ...
max_ax_base...
max_ax_ind_1..
max_ax_ind_2_a
max_ax_ind_2_b
max_ax_ind_2..
max_ax_ind....

0 attempted, O succeeded,

module US
0 attempted, O succeeded,

module RS
0 attempted, O succeeded,

module maj_hw_model
0 attempted, O succeeded,

module maxf_to_maxf_model_prf

0 seconds.

0 seconds.

0 seconds.

0 seconds.

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

Totals: 11 proofs, 11 attempted, 11 succeeded, 244 seconds.

Proof summary for module maj_hw

Totals: O proofs, O attempted, O succeeded, O seconds.
Proof summary for module gc_hw

Totals: O proofs, O attempted, O succeeded, O seconds.
Proof summary for module RS_maj_model

Totals: O proofs, O attempted, O succeeded, O seconds.
Proof summary for module to_hw

Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for

module gen_com

P_eXxe_base. ... .. e e PROVED
p_exec_ctrl_base....... .. e PROVED
p_exec_ctrl_ind....... ... .. PROVED
PoeXxec _CBrl. ... e e PROVED
P_LEM 2 0. . e e e PROVED
P_LEM 2 s, i e e e PROVED
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PN, e e PROVED

p_exe_ind_1.. .. .. e PROVED
p_exe_Ind_2. ... ... e PROVED
p_exec_element..... ... ... ... e e PROVED

Totals: 10 proofs, 10 attempted, 10 succeeded, 32 seconds.

Proof summary for module clocks_mapclocks
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module mapalgorithm
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module juggle_opt

mult_div_proof.... ... ... PROVED
stepl _proof. .. . . e PROVED
Step2 proof. . . . e e PROVED
6 - 0 PP PROVED
rearrange_delta_opt_TCCl _proof............. ... ... .... PROVED

Totals: b proofs, 5 attempted, 5 succeeded, 20 seconds.

Proof summary for module clockprops

12R _Proof . . i e PROVED
upper_bound_proof.. ... ... ... e PROVED
basis _proof. ... ... e PROVED
small_shift_proof........ ... . i PROVED
Ind_proof. ... e PROVED
adj _pos_Proof . .. . .. e PROVED
lower_bound_proof........ ... i e PROVED
lower_bound2_proof....... ... .. i PROVED
=y o oo T PROVED
bounds_proof. ... ... e PROVED
TMPTooL . . e e PROVED
full part_sum_proof........ ... .. i PROVED

Totals: 12 proofs, 12 attempted, 12 succeeded, 26 seconds.

Proof summary for module DS_to_RS
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module RS_majority
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_maj_hw_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module minimal_hw

p_f_s_mem_TCCLl.. ... . . e PROVED
P_f s dlem TCCL. . . . e e e PROVED
P_f s 1em TCC2. .. . i e e e PROVED
P_cell _fn TCCL. . e e e PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 10 seconds.

Proof summary for module gc_hw_prf

Posmall _dem. ...ttt i e e e PROVED
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p_hide_sm_lem_O. ... .. e PROVED

p_hide sSm_lem_S. ... e PROVED
p_hide_sm_lem. .. ... e PROVED
Posmall_eq lem. ...t e PROVED
Pome_lem_O. ..o e e e PROVED
Pome_lem_sla. ... e e e PROVED
PoIm sl e e e PROVED
Pome_lem_s1b. ... e e PROVED
Pome_lem_sl. .. o e e e e PROVED
o =T ) - PROVED
o =T ) . PROVED
PoMe _ L mM. oot e e e e PROVED
p_match_exists_Jem.......... ..o, PROVED
p_match_exists_lem2a............ciiuiniiiiiiiiiiinnn. PROVED
p_match_exists_lem2b........... ... PROVED
p_match_exists_lem3......... ... i PROVED
posmallest_adr_lem........ ... PROVED
Pomelda. o e e e e PROVED
p_match_exists_lemd......... ... i PROVED
p_write_em_prop n_O..... ...t PROVED
= o PROVED
PoWeP2Db. e PROVED
= o PROVED
= o L e PROVED
= o o PROVED
= o PROVED
= o - PROVED
= o - e PROVED
= o - 2 PROVED
PoWePnS_LemM. .ottt e e e e PROVED
PWTite M _PTrOP Tl S ittt ittt e PROVED
PoWTite @M _PIOP Tl .ttt ittt e PROVED
PWTite M _PTOP. . vttt i e PROVED
p_write_em_lem. ... ...t PROVED

Totals: 35 proofs, 35 attempted, 35 succeeded, 410 seconds.

Proof summary for module to_gc_hw
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_RS_maj_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module rcp_defs_imp_to_hw
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module minimal_v

pocell fn TCCL. .. . e PROVED
P_E v _ax_TCCL. .. e PROVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 1 seconds.

Proof summary for module DS_lemmas
Totals: O proofs, O attempted, O succeeded, O seconds.
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Proof summary for module algorithm_mapalgorithm
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module lemmab

rearrange2_proof. ... ... .. ... e e PROVED
lemmabproof. . ... . e PROVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module lemma2

lemma2_proof. . ... ... e e PROVED
lemma2a_proof. ... ..o e e PROVED
lemma2b_proof. ... ... e e PROVED
lemma2c_proof. ... ..o e e PROVED
lemma2d_proof. ... ... e PROVED
lemma2e _proof. ... ..o e e PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 28 seconds.

Proof summary for module RS_to_US
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module maj_hw_to_maj_hw_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module minimal_hw_prf2

< - PROVED
P_ES I TC . e e e PROVED
PSS e e PROVED
P_ES2 TCC . e e e PROVED
P_ES3 _TC . e e e e PROVED
P_ES3 _TCC2. e e PROVED
< - - T PROVED
P s dem. .. e e PROVED
p_f_s_lem_cntrl...... ... .. e PROVED

Totals: 9 proofs, 9 attempted, 9 succeeded, 20 seconds.

Proof summary for module minimal_hw_prf

Pofc_lem_a 0. ... e e PROVED
o A T - < e PROVED
p_well founded....... ... .. . e PROVED
o A T - e PROVED
P_fc_lem_b_O. ... e PROVED
Pofc _lem b s. . .. e e PROVED
Pofc _lem_b. ..o e PROVED
p_cell of MB_lem....... ..ot PROVED
p_cell of MB_ lem_2..... ...t PROVED
p_cell of MB map_lem_TCC1l.......... ... .. PROVED
p_cell of MB map_lem........ ..., PROVED
p_p_cell_of _MB_map_lem TCC2........... ... ... PROVED
p_p_cell_of _MB map_lem TCC3........... ... . ... PROVED

Totals: 13 proofs, 13 attempted, 13 succeeded, 325 seconds.

Proof summary for module frame_funs_to_gc_hw
Totals: O proofs, O attempted, O succeeded, O seconds.
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Proof summary for module to_minimal_hw
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module RS_majority_to_RS_maj_model
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module rcp_defs_imp_to_hw_prf

PoCells aX . ittt e e e e e PROVED
Pocasel . i e e e e PROVED
PO e e e e PROVED
P_COb _TC . e e e e PROVED
P_COb . e e e PROVED
P_Cl T . e e e e PROVED
T PROVED
P_C2 T . e e e e PROVED
Pl e e e e PROVED
PP C2 T 2. . e e e e PROVED
P_C3 Tl . e e e e PROVED
T T PROVED
P e e e e PROVED
o <2< < PROVED
P_CT Tl . e e PROVED
T PROVED
P8 e e e e PROVED
T <2< < PROVED
PoCasel . o e e PROVED
< < PROVED
P_write_cell _aX. .. ...t e PROVED
PonmMO . e e e e PROVED
o 1 e PROVED
o 11 PROVED
o 11 PROVED
o R (1= (1T e PROVED
Pocebuf _ax. ... e e PROVED
p_cell_state_reflexive.......... ..o, PROVED
p_cell_state_symmetric.......... ... ... i, PROVED
p_cell_state_transitive........... ... . i, PROVED
p_cs_length_congruence...........c.ouuiiiiniiininninnnnnnnn PROVED
p_wWwrite_cell COngruencCe. ........oviuiiiiniuunneeeeennnnns PROVED
p_control_state_reflexive............. .. i, PROVED
p_control_state_symmetric.............. .. ..., PROVED
p_control_state_transitive............. ... ... ..l PROVED
pP_frame_Congruence. .. ... ..o tittiiiinntnrenninnnneann PROVED

Totals: 36 proofs, 36 attempted, 36 succeeded, 272 seconds.

Proof summary for module minimal_v_lemmas
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_minimal_v
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DS_map_proof
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o < T o e e PROVED 1 seconds
o L= 1 o D PROVED 0 seconds
o L= T o R T PROVED 4 seconds
o L= o PROVED 4 seconds
o L= 1 o PROVED 2 seconds
PP T e ettt e PROVED 13 seconds

Totals: 6 proofs, 6 attempted, 6 succeeded, 24 seconds.

Proof summary for module DS_support_proof
PoSUPPOTE _d . e e PROVED 4 seconds
PoSUPPOT L . i e e e PROVED 1 seconds
PoSUPPOTrE . e e PROVED 2 seconds
PoSUPPOT L 6. i i e e PROVED 1 seconds
P SUPPOT L 7 et e PROVED 2 seconds
PoSUPPOT L 8. i e e PROVED 2 seconds
PoSUPPOTE . i e e PROVED 1 seconds
PosUPPOrt _10. o e e e PROVED 4 seconds
PosUPPOrt Ll . o e e e PROVED 2 seconds
PosSUPPOTrE 1. o e e PROVED 1 seconds
PosUPPOTrt 1. o e e PROVED 2 seconds
PosUPPOrt 1. o e PROVED 0 seconds

Totals: 12 proofs, 12 attempted, 12 succeeded, 22 seconds.

Proof summary for module DS_lemmas_prf
Pofr_com_d. . . e e PROVED 0 seconds
P COmM 2. . e e PROVED 6 seconds
o T e PROVED 8 seconds
PoEC B e PROVED 0 seconds
Pofc A da. e PROVED 4 seconds
o T S e PROVED 10 seconds
o A T S e PROVED 26 seconds
o A T S PROVED 11 seconds
o A T S = e PROVED 8 seconds
o T S s e PROVED 3 seconds
PofC A 2. e e e PROVED 12 seconds
o A T A e PROVED 9 seconds
< A T e PROVED 4 seconds
PoEfc A 2d. .. e PROVED 5 seconds
PofC A B, e PROVED 9 seconds
o A T R PROVED 11 seconds
Pt B B i e e PROVED 7 seconds
P A Bd. . e e PROVED 12 seconds

Totals: 18 proofs, 18 attempted, 18 succeeded, 145 seconds.

Proof summary for module RS_lemmas
P_initial _WOorking.......c.vuviiiiii i, PROVED 2 seconds
p_initial maj_cond.......... ... PROVED 1 seconds
poinitial maj. .. ... e e PROVED 4 seconds
p_working_set_healthy........... ... ... ... i i, PROVED 1 seconds
PCONSENSUS _PLOP . s ¢ v v tte ottt iteeein et PROVED 5 seconds
P_maj_Senb. ... e e PROVED 2 seconds
p_rec_maj_eXists....... ... PROVED 11 seconds
p_rec_maj_f_C... .. e PROVED 10 seconds



Totals: 8 proofs, 8 attempted, 8 succeeded, 36 seconds.

Proof summary for module map_proofs

PP PROVED
Corr_zero_basis_proof............. .. . i, PROVED
Corr_zero_ind_proof........ ... ... i, PROVED
Corr_zero _proof. ... .. i e PROVED
rt_is T proof.... ... . i PROVED
goodclocks _prof. ... ... e e PROVED
all_nonfaulty_proof........ ... i PROVED
count_basis_proof........ .. .. . i i e PROVED
count_ind_proof.. ... ... ... PROVED
count_proof. ... ... e e PROVED
all_good_proof. ... ... i e e PROVED
none_faulty_proof...... ... . i e PROVED
PP PROVED
- N PP PROVED
O PROVED
ol e PROVED
G PROVED
e PROVED
G e PROVED
B PROVED
P PROVED
0 O PROVED
0 o PROVED

Totals: 23 proofs, 23 attempted, 23 succeeded, 296 seconds.

Proof summary for module lemma3
lemma3 _proof. ... ..o e e PROVED
Totals: 1 proofs, 1 attempted, 1 succeeded, 6 seconds.

Proof summary for module lemmal
lemmal _proof. ... ..o e e PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 6 seconds.

Proof summary for module lemma6é

subl_proof. ... . . PROVED
sub_A_proof. .. .. .. PROVED
sub2_proof. ... ... e PROVED
lemmab _proof. ... ... e e PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 13 seconds.

Proof summary for module maj_hw_to_maj_hw_model_prf

eq_reflexive k... ... e PROVED
eg_symmetric_K....... ... e PROVED
eq_transitive _k........ ... ... e PROVED
eq_reflexive _t. ... ... e PROVED
eg_symmetric_t... ... ... PROVED
eq_transitive_t.. ... ... .. e PROVED
0 =y R T < PROVED
B Ma ] K. e PROVED
tomaj _len _aX. ... e PROVED
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Totals: 9 proofs, 9 attempted, 9 succeeded, 134 seconds.

Proof summary for module frame_funs_to_gc_hw_prf

PoSUCC _CnbY AKX . . ittt e e e PROVED
Popred _cntr _aX. ... i i e PROVED
o = . PROVED
PoPred _SUCC 8K .t it ittt ittt ittt e e, PROVED
P BUCC _CONGTUENCE . & vttt e et iettieieeenenenennnnnnenns PROVED
P_PTed _CONgIUENCE. .ttt ettt itieie e et PROVED

Totals: 6 proofs, 6 attempted, 6 succeeded, 9 seconds.

Proof summary for module gen_com_to_gc_hw
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module RS_majority_to_RS_maj_model_prf

eg_reflexive. ... .. e PROVED
eQ_SYMMeTTiC. .. . i e PROVED
eg_transitive. ... ... ... e PROVED
11E By R PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 16 seconds.

Proof summary for module generic_FT_to_minimal_v
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DS_to_RS_prf
p_frame_commutes......... ... e e PROVED
Poinitial mMapsS. ...ttt e e PROVED
Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module RS_invariants

p_base_state_ind......... ... . ... i i PROVED
p_ind_state_ind........ ... .. . . . PROVED
p_state_induction........... ... PROVED
p_maj_working inv_1l........... . . i PROVED
p_maj_working inv_12........ ... i PROVED
P_Maj_WOXKing INV.......uuiuuiiiit i eeenennns PROVED
p_state_rec_inv_1l....... ... . ... PROVED
p_state_rec_Inv_12........ .. ... PROVED
p_state_rec_Inv_13....... ... ... PROVED
p_state_rec_Inv_14....... ... ... e PROVED
p_state_rec_inv_15...... ... . ... PROVED
Postate_TeC _InV.......... it PROVED

Totals: 12 proofs, 12 attempted, 12 succeeded, 44 seconds.

Proof summary for module lemma4d

rearrange2_proof. ... ... .. ... e e PROVED
rearrange3_proof. .. ... .. ... e e PROVED
sublemmal_proof..... ... ... .. e PROVED
lemma2x_proof. ... ... e e PROVED
lemmad _proof. . ... ..o e e PROVED

Totals: b proofs, 5 attempted, 5 succeeded, 12 seconds.

Proof summary for module minimal_v_to_minimal_hw
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Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module gen_com_to_gc_hw_prf

p_mem_eq LEM1 _TCCLl. ... ... i PROVED
p_mem_eq LEM1 _TCC2. ... ... i PROVED
pmem_eq LEM1. .. ... . e PROVED
p_p_mem_eq LEM1 _TCC3...... ... i, PROVED
pomem_eq LEM3. ... . e PROVED
p_mem_eq LEM4. .. ... . e PROVED
P_MEmOry_equal. ... ... e e PROVED
Pt e e e PROVED
Pt e e PROVED
P_Is_et _lem_O. ... e e PROVED
Poets . e PROVED
= < PROVED
= < PROVED
Poetsd . e PROVED
Poetsb . e PROVED
PoetsB . e e PROVED
P_Is_et _dlem s. ..o e e PROVED
PoIs_et _dem. ... e e PROVED
P_etO. e e e e PROVED
Pt e e PROVED
< T = PROVED
Pt e e e PROVED
pPoexec_task_aX...... .. i e PROVED
poexec_task_ax_2..... ... e PROVED

Totals: 24 proofs, 24 attempted, 24 succeeded, 131 seconds.

Proof summary for module maj_funs_to_minimal_hw
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module minimal_v_prf_4

PONV DA, it e e e PROVED
ponv_ind_d. ... .. PROVED
ponv_ind_2. ... ... e PROVED
ponv_ind_3. ... .. e e PROVED
ponv_ind. ... ... e PROVED
path_outputs_not_voted.......... ... .. .. . . i, PROVED
POnV DA . e e PROVED
penv_ind_d. ... .. e PROVED
penv_ind_2. ... .. e e PROVED
penv_ind_3. ... e e PROVED
penv_ind. .. ... e PROVED
path_cells not_voted......... ... ... . i, PROVED
Ienv base. . i e e s PROVED
lenv dnd d. .. e PROVED
lenv dnd 2. ..t e PROVED
lenv dnd 3. .. e PROVED
lenv dnd. oo e e PROVED
last_cell not_voted........ ..., PROVED
B T N o - - 1 PROVED
lec dnd d. . e PROVED

=N ONO - =

1

-~

~N RO NN

2

w

O 01 N oo NN

10

54

©

10

36
10

11
10

46

©

10

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds



o o 5 s s PROVED 40 seconds

o T 1 PROVED 7 seconds
N T T 1 £ PROVED 9 seconds
last_cell_condition........ ..o, PROVED 12 seconds
0o N o - ¥ = . PROVED 8 seconds
nec_ind_ 1. ... e PROVED 10 seconds
NCC_INd_ 2. .. . e PROVED 35 seconds
nec_Ind_ 3. ... e e PROVED 11 seconds
NCC_INd. ..o e e PROVED 9 seconds
next_cell_condition..........viiiiiiiiiiiiiiii i PROVED 7 seconds
between_frames_self......... ... .. il PROVED 3 seconds
between_frames_prev........ ... e PROVED 58 seconds
between_frames_prev_2....... ... . i e PROVED 46 seconds
between_frames_prev_3...... ... i e PROVED 17 seconds
between_frames_prev_4. .. ... ... i e PROVED 15 seconds
prev_between_frames.......... ... ... il i PROVED 61 seconds
input_path_one........ ... .. . i e PROVED 1 seconds
input_path_zero........ ... .. . i e PROVED 1 seconds
input_path_ext...... ... . PROVED 6 seconds
MO _MINUS _PLreV. ...ttt ittt ettt PROVED 12 seconds
MO _MINUS _PreV_IMAX. ..ottt oo PROVED 4 seconds
MO _MINUS_NONZETO. & vttt ittt et iiiie e et iiiine e PROVED 1 seconds
prev_fr_distinct......... .. . . e PROVED 3 seconds

Totals: 43 proofs, 43 attempted, 43 succeeded, 648 seconds.

Proof summary for module minimal_v_prf_3

long _path_cyclic....uiiiiiiiiiiiii i i i PROVED 2 seconds
cell rec_path_acyclic........ .o, PROVED 6 seconds
path_len_bound......... ... i e PROVED 1 seconds
NF_cell rec_bound_2........ ... PROVED 3 seconds
max_path_len_bound.......... ... ... .. il PROVED 3 seconds
crpe_ind_ 1. ... . e PROVED 3 seconds
crpe_ind_2_1.. .. . . e PROVED 60 seconds
crpe_Ind_2_ 2. ... ... e PROVED 15 seconds
crpe_ind_2. ... .. e PROVED 2 seconds
crpe_Ind_3. ... . e PROVED b seconds
crpe_Ind. ... . e PROVED b seconds
cell rec_path_exists......... ..o, PROVED 7 seconds
Crip_base. ... ... e e PROVED 35 seconds
crip_ind_d. ... . e PROVED 41 seconds
crip _Ind_2. ... .. e PROVED 6 seconds
crip _ind. ... . e PROVED 4 seconds
cell rec_input_path......... ... ... i, PROVED 6 seconds
crbl _base. ... ... e PROVED 7 seconds
Crbl_dem 2. .. e e PROVED 18 seconds
crbl_dnd_1.. .. . e PROVED b seconds
Crbl _dem 8. .. e e e PROVED 54 seconds
Crbl_dem 4. ... e e PROVED 6 seconds
crbl_dem 5. .. e e PROVED 3 seconds
Crbl _dem 7. . e PROVED 3 seconds
Crbl_dem 6. ... e e PROVED 2 seconds
crbl_ind_2_1.. .. . e PROVED 23 seconds
crbl_ind_2_ 2. ... . . e PROVED 8 seconds



crbl_ind_2. ... . . e PROVED

Lol o R = (T 2 PROVED
o ot o e ' 0 PROVED
o o o e ' P PROVED
crbl _dem 1. ... e e e PROVED
NF_cell_rec_bound_1........ .. .. iiiiiiiinnnnenn. PROVED

Totals: 33 proofs, 33 attempted, 33 succeeded, 361 seconds.

Proof summary for module minimal_v_prf_2

) 4 Kl o - = = PROVED
bncr _And _d. ... e e e e e e PROVED
bnCT _And 2. ... e e e e e e e PROVED
bnCT _And_ 3. ... e e e e e e e PROVED
34 ok e + L PROVED
bound_NF_cell _recC...... ...ttt ittt PROVED
berp _base. ... e e PROVED
berp_ind_d. ... e PROVED
berp_ind_2. ... . e PROVED
berp_ind_3. ... e PROVED
berp_ind. ... e PROVED
bound_cell_rec_path........ ... i i PROVED
full _rec _base. ... ...t e e e PROVED
Tull _rec _ind....... ittt e e e e PROVED
Tull _rec. .. e e e e e e PROVED
ULl reC TP, it e PROVED
N _Ccrn _base. .. ... e e e PROVED
o o« 5+ PROVED
NF _cell reC NONZEeTO. ... i vti it ittt te it tteeeieneennennn PROVED
nf_v_sched....... ... e e e PROVED
NF_rec_set_nonempty.......... ..., PROVED
HF _cell _Tec eXistsS. . ittt it teeeeaneenenns PROVED
N Crr _base. ... e e e e PROVED
nf _crr_And_d. ... e e e e e PROVED
nf_crr _And 2. ... e e e e e PROVED
nf_crr _And_B. ... e e e e e e PROVED
o A s e 5+ PROVED
S N O oY o o =Y o PROVED
mrf_nat_hack....... ... ... e PROVED
max_rec_frames_NONZero......... ... iiiiininenennnnnns PROVED
max_all_rec_Set_NONZEeTXO..........iiniutiinenenenenennnns PROVED
recovery_period min........... ... it PROVED

Totals: 32 proofs, 32 attempted, 32 succeeded, 327 seconds.

Proof summary for module RS_to_US_prf
p_frame_commutes......... ... e e PROVED
Poinitial mMapsS. ...ttt e e PROVED
Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module lemma4_opt
lemmad_self proof........ ... i PROVED
lemmad4_others_proof........ ... .. i PROVED
Totals: 2 proofs, 2 attempted, 2 succeeded, 28 seconds.
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Proof summary for module summations_alt

18 proot . e e
S P _PToOoL . . e e
bound_nonfaulty_proof........... ... .. i i,
14 proof. . e e
14aproot. . oo e e
1 proot . . e e
culm_proof. ... . . e e e

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

Totals: 21 proofs, 21 attempted, 21 succeeded, 1068 seconds.

Proof summary for module to_minimal_hw_prf_ 2

Totals: 9 proofs, 9 attempted, 9 succeeded, 52 seconds.

Proof summary for module maj_funs_to_minimal_hw_prf

Totals: 3 proofs, 3 attempted, 3 succeeded, 7 seconds.

Proof summary for module minimal_v_prf
P_TrecCoVery _Period _aX....uuueuri it iiinnnennneeeeennnnns
ST 1 L
PoCONEIOLl NC. ottt i e e
o = 0 - T e
p_components_equal.........iii i e e
o R o= T o o e
P_initial _TeCOVeI Y. ..ottt e e
s L= T oY o o= e
p_control_recovered......... ...
p_cell recovered...... ... e

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
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PoVObE Ma . ottt e e PROVED 17 seconds

P_cae_base. ... ... e PROVED 2 seconds
p_cae_ind_1.. .. .. e PROVED 6 seconds
p_cae_Ind_2. ... .. e e PROVED 14 seconds
p_cell_apply_element......... ... .., PROVED 6 seconds
p_f_v_components......... ... e e PROVED 2 seconds
p_p_f_v_components _TCCl......... ... ..., PROVED 0 seconds
p_f_c_uncomputed_cells......... ..o, PROVED 1 seconds
p_exec_element_2....... . ... e e PROVED 6 seconds
p_exec_cells match......... ... . i i i PROVED 50 seconds
pocil_ind_1d. ... e PROVED 15 seconds
pocil ind_12. .. . e e PROVED 6 seconds
pocil ind_13. .. . e PROVED 1 seconds
pocil ind. ... e PROVED 7 seconds
p_f_c_cells match....... ... i PROVED 11 seconds
p_cell_input_frame_lem............ ..ottt PROVED 14 seconds
rec_set_equal_1...... ... .. e PROVED 6 seconds
rec_set_equal_2...... ... .. i e PROVED 6 seconds
rec_set_equal....... ...t i e PROVED 7 seconds
NF_cell rec_equiv.......uuunininiiiiiiiiinniinnnnn.. PROVED 1 seconds

Totals: 30 proofs, 30 attempted, 30 succeeded, 211 seconds.

Proof summary for module summations_opt
only_2_basis_proof....... ... ... PROVED 13 seconds
proc_index_prop_proof....... ... . ...l PROVED 4 seconds
only_2_ind_proof........ ... ... e PROVED 84 seconds
only_2_gen_proof....... ... . e e PROVED 115 seconds
ONnly 2 Proof. ... . e e PROVED 3 seconds
bound_nonfaulty_self proof............. .. ... . ... . ..., PROVED 6 seconds
Poldse. e e PROVED 225 seconds
14self _proof. ... e PROVED 16 seconds
except_2_proof .. ... .. e PROVED 8 seconds
bound_nonfaulty_others_ proof............. ... .. ... ... ... PROVED 5 seconds
Poldotl. o e e PROVED 147 seconds
l4others _proof. ... .o e PROVED 23 seconds
helper_proof. ... . e PROVED 0 seconds
14all proof. . . e e PROVED 24 seconds
14a_opt _proof. ... e e PROVED 9 seconds
15 opt _proof. .. i e PROVED 18 seconds
culmination_opt_proof........ ... ... ... i, PROVED b seconds

Totals: 17 proofs, 17 attempted, 17 succeeded, 705 seconds.

Proof summary for module minimal_v_to_minimal_hw_prf
p_cell_input_constraint............... .. i, PROVED 9 seconds
P_f s _control _aX......iiiii i e e PROVED 0 seconds
P_LEML _TCCL . e e PROVED 1 seconds
P_LEMI _TCC2. o e e PROVED 2 seconds
P_LEML . L e e PROVED 5 seconds
P_LEM2 TCC . e e e PROVED 1 seconds
P_LEM2 TCC 2. i e e PROVED 1 seconds
PN, e e PROVED 3 seconds
PLEM . o e PROVED 3 seconds
P_LEM3 TCC . e e PROVED 2 seconds



P_LEMA . . e PROVED

P_LEMG . e e e PROVED
P_LEMG. . e e e PROVED
o A < - < PROVED
P_cell _fn TCCL. . e e e PROVED
P_E v TC . e e e e PROVED
p_cell apply MAP_EQ...... .ot PROVED
o - PROVED
P_E v ax TCCL . e e e PROVED

Totals: 19 proofs, 19 attempted, 19 succeeded, 83 seconds.

Proof summary for module main_opt

basis _proof. ... ... e PROVED
skew_S1C_proof ... ..o e e PROVED
Ind_proof. ... e PROVED
Theorem_1_opt_proof....... ... . i, PROVED

Totals: 4 proofs, 4 attempted, 4 succeeded, 17 seconds.
Proof summary for module clk_interface
Posync_thm. ... ... . e PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, 2 seconds.

Proof summary for module LE
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_minv
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module clkprop

o T 2 e PROVED
Ponfc _dem. . .. e e PROVED
PoIt 2 e e PROVED
o B PROVED
Pt e e e PROVED
P_Etl . e e PROVED
P_ItB . e e PROVED
o I PROVED
P_Et8 . e e PROVED
P_It8a. . e e PROVED
o PROVED
P_Etl0 . e e PROVED
o B PROVED
o PROVED
P_GOAL . . e e e e PROVED

Totals: 15 proofs, 15 attempted, 15 succeeded, 38 seconds.

Proof summary for module DA
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_LE
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module to_DA_minv
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Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_to_DS
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_minv_to_LE
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_to_DA_minv
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_support
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_lemmas
Totals: O proofs, O attempted, O succeeded, O seconds.

Proof summary for module DA_minv_to_LE_prf
p_broadcast_duration............ ...
p_broadcast_duration2........... ... ... i
p_all _durations. .. ...
P_pos_durations. ....... ... e

Totals: 4 proofs, 4 attempted, 4 succeeded, 2 seconds.

Proof summary for module DA_to_DA_minv_prf
p_broadcast_duration............ ...
p_broadcast_duration2........... ... ... i
p_all _durations. .. ...
P_pos_durations. ....... ... e

Totals: 4 proofs, 4 attempted, 4 succeeded, 3 seconds.

Proof summary for module DA_broadcast_prf

PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED

PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
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< v o PROVED

p_com_broadcast_5....... ... . .. i PROVED
P_bT_Int. . . e e PROVED
PoIntO . e e e PROVED
Podntla. e e PROVED
o T ¢ PROVED
PoAnt2a. . e e PROVED
< T 11 PROVED
o T 11 v S PROVED
PoIntd . e e PROVED
PoInt . e e e PROVED

Totals: 32 proofs, 32 attempted, 32 succeeded, 157 seconds.

Proof summary for module DA_support_prf

PoSUPPOTE _d . e e PROVED
PoSUPPOT L . i e e e PROVED
PoSUPPOTrE . e e PROVED
PosUPPOTrt 1. o e e PROVED
Poslab base. .. e e PROVED
P_sl1B _ind. ..o e e e PROVED
PosUPPOrt 1. o e PROVED
PosSUPPOTrE 16 . oo e e PROVED
o < T o e e PROVED
o L= 1 o D PROVED
o L= T o R T PROVED
o L= o PROVED
PP T e ettt e PROVED
p_base_state_ind......... ... . ... i i PROVED
p_ind_state_ind........ ... .. . . . PROVED
p_state_induction........... ... PROVED
p_enough_inv_ 11, ... . e e e PROVED
p_enough_inv_12. ... .. .. e e e PROVED
P_enough_inv. ... .. .. e e e PROVED
ponfclk dinv_ 11, ... e PROVED
p_nfclk Ainv_12. .. ... e PROVED
P_nfclk _AnV. ... e PROVED
p_lclock _inv_12b.. ... e PROVED
P_lclock _Anv_12C. ...t e PROVED
p_lclock _dnv_dl. ... .. e PROVED
pP_lclock _Anv_12. ... .. PROVED
pP_lclock _Anv_13. . .. . . e e PROVED
p_lclock _dnv_d4. . .. .. e PROVED
P_lcloCk ANV, ..o e e PROVED
p_clkval_dnv_11. ... ... e PROVED
p_clkval _dinv_12. ... ... e PROVED
PoclRval _InV. ... . e PROVED
o o 0 PROVED
Poda_ Tt _Lem. ... e e PROVED
p_cum_delta_inv_11....... ... ... PROVED
PoCdi_d2a. i e e e e PROVED
p_cum_delta_inv_12........ .. ... PROVED
p_cum_delta_inv_14....... ...t PROVED
pocum_delta_Inv. .. ... e PROVED
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Totals: 39 proofs, 39 attempted, 39 succeeded, 205 seconds.

Proof summary for module DA_lemmas_prf

p_phase_com_compute......... ... ... i i PROVED
pP_phase_com_1x1. ... ... . . e PROVED
P_phase_com_1xX2. ... ... . e PROVED
P_phase_com_1x4. ... ... i e PROVED
p_phase_com_1xX7. ... ...t PROVED
p_phase_com_broadcast........... ... ... i i i, PROVED
p_com_broadcast_1........ ... . i e PROVED
p_com_broadcast_2........ ... . i e PROVED
p_com_broadcast_3........ ... . . e PROVED
p_com_broadcast_4...... ... ... e PROVED
p_earliest_later_time........... ... ..o, PROVED
Pl a. o e e PROVED
P_ELT . e e e PROVED
p_phase_com_vote...... ... ... i e PROVED
Pocom_vVobe L. . .. e e PROVED
PoCOmM VOB 2. o e e PROVED
PoCOm VOB 3. . e e e PROVED
PoCOm_ VOB e 4. . . e e PROVED
P_pPhase _COM_SYNC. .. ..ottt i PROVED
PoCOmM_SYNC L. o e e PROVED
I oo 1 e PROVED
o oo 1 e PROVED
PoCOmM_SYIC 4. ottt e e e PROVED

Totals: 23 proofs, 23 attempted, 23 succeeded, 61 seconds.

Proof summary for module le_top

PoQUmMY . oot e e e, PROVED

Proof summary for module DA_to_DS_prf

p_phase_commutes.......... ... .. i e PROVED
Poinitial mMapsS. ...ttt e e PROVED

Totals: 2 proofs, 2 attempted, 2 succeeded, 3 seconds.

Proof summary for module top

p_RS_frame_commutes........... ... ... . i PROVED
P_RS_Initial mMapsS......c.oiuiiiiiiiiii PROVED
p_DS_frame_commutes........... ... .. i PROVED
P_DS_initial MapPS. ...t e e PROVED
p_DA_phase_commutes........... ... .. PROVED
P_DA_Initial MapPS. ...t e e PROVED
PoQUmMY . oot e e e, PROVED

PoAumb. . e e PROVED

Totals: 1 proofs, 1 attempted, 1 succeeded, O seconds.

Grand Totals: 859 proofs, 859 attempted, 859 succeeded, 7422 seconds.
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B.3 All Module Obligation Status (amos)

This report was reproduced by deleting entries for modules having no obligations.

Obligation proof status for modules on using chain of module everything

Obligation proof summary for module nat_types

Upto _TCCL . o e e proved
upfrom _TCCL. ... e e e proved
below _TCCL. . i e e proved
above _TCCL. . . e e proved

Totals: 4 obligations, 4 proved, O unproved.
Obligation proof summary for module interp_rcp
processors_TCCL. ... i i proved

Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module numeric_types

posnum_TCCL. .. .. e e e proved
nonnegnum_TCCl.. ... ... .. i i proved
fraction _TCCLl. ... .. . . i i i proved

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module rcp_defs_i
processors_TCCL. ... i i proved
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module memory_generic

address_ty_TCCl. ... .. i i proved
address_range_ty_TCCl....... ... . i, proved
addr_len_ty _TCCl.. ... . i i i proved

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module finite_sets
finite_set_TCCLl. ... .. i i i i proved
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module absolutes
abs_recip _TCCL. ... i e proved
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module rcp_defs_hw
o210 T O proved
write_cell _TCCL. ... .. i i e proved



Totals: 2 obligations, 2 proved, O unproved.

Obligation proof summary for module path_funs
rec_set _TCCL. . .. .. i e
NF_rec_set _TCCl. ... ... i i it
path_len_set_TCCLl.. ... . i i i
all_rec_set _TCCL. ... .. i i i
Totals: 4 obligations, 4 proved, O unproved.

Obligation proof summary for module proc_induction
proc_plus_TCCL. ... e
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module maxf_to_maxf_model

Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module recursive_maj
eg_reflexive. ... .. e
eQ_SYMMeTTiC. .. . i e
eg_transitive. ... ... ... e

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module mailbox_hw

MBCell TCCL. . .ttt it
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module time_maptime

Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module algorithm
T o 6 OO
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module juggle_opt
rearrange_delta_opt_TCCl.......... ... ... ...
Totals: 1 obligations, 1 proved, O unproved.
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Obligation proof summary for module minimal_hw

cell of MB map_lem _TCCl......... ..., proved
f s mem TCCL. .. .. e proved
T s lem TCCL. .. . i e proved
f s lem TCC2. .. .. i e proved
cell _fn TCCL. ... i e proved
T v TCC . e e e e proved

Totals: 6 obligations, 6 proved, O unproved.

Obligation proof summary for module rcp_defs_imp_to_hw

o= 1 5= - < proved
Write_cell _aX. ... ...ttt e proved
NULL MeMOTY _8X . . ottt ettt ittt ettt ettt it proved
cebuf _ax. ... . e e proved
cell_state_reflexive........ .., proved
cell_state_symmetric......... ..., proved
cell_state_transitive.......... ..., proved
control_state_reflexive.......... ..., proved
control_state_symmetric........... ... . i, proved
control_state_transitive.............. ... ... proved
frame_congruence. .. ...ttt proved
cs_length_congruence. ........utiiininiennniiennnennennn proved
write_cell _congruence......... ..ottt proved

Totals: 13 obligations, 13 proved, O unproved.

Obligation proof summary for module minimal_v

cell _fn TCCL. ... i e proved
T v _ax_ TCCL. . e e e proved

Totals: 2 obligations, 2 proved, O unproved.

Obligation proof summary for module algorithm_mapalgorithm

O proved
B e e proved
- N b proved
O e e proved
L proved
L proved
. e e proved
D e e proved
L proved
L T proved
L T o« proved

Totals: 11 obligations, 11 proved, O unproved.

Obligation proof summary for module maj_hw_to_maj_hw_model
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Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module minimal_hw_prf2

Fosdl TCCL . o i e proved
Fos2 TCCL . o i e proved
Fe3 TCCL . i i e proved
Fe3 TCC 2. o i e proved

Totals: 4 obligations, 4 proved, O unproved.

Obligation proof summary for module minimal_hw_prf
p_cell of MB map_lem_TCC2.......... ... .. proved
p_cell of MB map_lem_TCC3......... ... ... proved
Totals: 2 obligations, 2 proved, O unproved.

Obligation proof summary for module frame_funs_to_gc_hw

=1 Lo B o5 1 v o B proved
Pred _Cnbr _aX. . ... e e proved
Pred _SUCC _@X. i vttt ittt it i e e e proved
SUCC_CONGTUEIICE . « v v vttt it vttt et e innnnnnanaeeeeeeennns proved
Pred _CONgIUeNCE. . vttt ittt iiieie e e iinnnennnennn proved

Totals: 5 obligations, 5 proved, O unproved.

Obligation proof summary for module RS_majority_to_RS_maj_model
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module rcp_defs_imp_to_hw_prf

o2 0 o T O proved
o R O proved
o2 O proved
P2 T2, L e e e proved
o2 N O proved
L A O proved

Totals: 6 obligations, 6 proved, O unproved.

Obligation proof summary for module gen_com_to_gc_hw

MEeMOXY_eqUal. . ..ottt it i it et e proved
exec_task_aX.. ... . e e proved
exec_task_aX_ 2.... .. .. e e proved

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module generic_FT_to_minimal_v
recovery_period_aX..........i i e proved
BUCC X . o vttt et e e e e proved



o o3 11 v o 0 S proved

Cells M. .ttt e e e proved
ULl recovVery. . v vt e e proved
Initial _XeCOVET Y. ittt ittt e s proved
o=y T o =T o o= o e proved
components_equal....... ...t e e proved
control_recovered. . ... ... ... i e e proved
cell recovered. ... ...t e e proved
VOB@ Ma . o ittt e proved

Totals: 11 obligations, 11 proved, O unproved.

Obligation proof summary for module minimal_v_to_minimal_hw

cell apply MAP_EQ...... ... proved
< R < proved
f s control _ax....... ... e proved
B R < proved
T v _ax_ TCCL. . e e e proved
cell_input_constraint.......... ... .. i, proved

Totals: 6 obligations, 6 proved, O unproved.

Obligation proof summary for module gen_com_to_gc_hw_prf

mem_eq LEM1_TCCL. ... .. . i e i proved
mem_eq LEM1_TCC2. .. ... . i i i i proved
p_mem_eq LEM1 _TCC3. ... ... i i i proved

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module maj_funs_to_minimal_hw

R maj aX. . e proved
L = T - e proved
tomaj _len _aX. ... e proved

Totals: 3 obligations, 3 proved, O unproved.

Obligation proof summary for module to_minimal_hw_prf_2
ClcAB_TCCL. .o e proved
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module minimal_v_prf
p_f_v_components_TCCLl........... .. .., proved
Totals: 1 obligations, 1 proved, O unproved.

Obligation proof summary for module minimal_v_to_minimal_hw_prf

LEML _TCC . i e i e proved
LEML _TCC 2. ot e i e proved
LEM 2 TCC . ot e i e proved
LEM2 TCC 2. it i e i e proved



LEME T CC . ot e e e

Totals: 5 obligations, 5 proved, O unproved.

Obligation proof summary for module DA_minv_to_LE

broadcast_duration............iiiiiiiiii i
broadcast_duration2...........c.ii i
A1l _dUTratiomS . vt e e e e e e
POos_durations. .. ...t e e

Totals: 4 obligations, 4 proved, O unproved.

Obligation proof summary for module DA_to_DA_minv

broadcast_duration............iiiiiiiiii i
broadcast_duration2...........c.ii i
A1l _dUTratiomS . vt e e e e e e
POos_durations. .. ...t e e

Totals: 4 obligations, 4 proved, O unproved.

Grand Totals: 123 obligations, 123 proved, O unproved.
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